贝加尔湖gvd中微子望远镜的最新结果

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
V. A. Allakhverdyan, A. D. Avrorin, A. V. Avrorin, V. M. Aynutdinov, Z. Bardačová, I. A. Belolaptikov, E. A. Bondarev, I. V. Borina, N. M. Budnev, V. A. Chadymov, A. S. Chepurnov, V. Y. Dik, G. V. Domogatsky, A. A. Doroshenko, R. Dvornický, A. N. Dyachok, Zh.-A. M. Dzhilkibaev, E. Eckerová, T. V. Elzhov, L. Fajt, V. N. Fomin, A. R. Gafarov, K. V. Golubkov, N. S. Gorshkov, T. I. Gress, K. G. Kebkal, V. K. Kebkal, E. V. Khramov, I. V. Kharuk, M. M. Kolbin, S. O. Koligaev, K. V. Konischev, A. V. Korobchenko, A. P. Koshechkin, V. A. Kozhin, M. V. Kruglov, V. F. Kulepov, Y. E. Lemeshev, M. B. Milenin, R. R. Mirgazov, D. V. Naumov, A. S. Nikolaev, D. P. Petukhov, E. N. Pliskovsky, M. I. Rozanov, V. D. Rushay, E. V. Ryabov, G. B. Safronov, B. A. Shaybonov, D. Seitova, S. D. Shilkin, E. V. Shirokov, F. Šimkovic, A. E. Sirenko, A. V. Skurikhin, A. G. Solovjev, M. N. Sorokovikov, I. Štekl, A. P. Stromakov, O. V. Suvorova, V. A. Tabolenko, B. B. Ulzutuev, Y. V. Yablokova, D. N. Zaborov, S. I. Zavyalov, D. Y. Zvezdov
{"title":"贝加尔湖gvd中微子望远镜的最新结果","authors":"V. A. Allakhverdyan,&nbsp;A. D. Avrorin,&nbsp;A. V. Avrorin,&nbsp;V. M. Aynutdinov,&nbsp;Z. Bardačová,&nbsp;I. A. Belolaptikov,&nbsp;E. A. Bondarev,&nbsp;I. V. Borina,&nbsp;N. M. Budnev,&nbsp;V. A. Chadymov,&nbsp;A. S. Chepurnov,&nbsp;V. Y. Dik,&nbsp;G. V. Domogatsky,&nbsp;A. A. Doroshenko,&nbsp;R. Dvornický,&nbsp;A. N. Dyachok,&nbsp;Zh.-A. M. Dzhilkibaev,&nbsp;E. Eckerová,&nbsp;T. V. Elzhov,&nbsp;L. Fajt,&nbsp;V. N. Fomin,&nbsp;A. R. Gafarov,&nbsp;K. V. Golubkov,&nbsp;N. S. Gorshkov,&nbsp;T. I. Gress,&nbsp;K. G. Kebkal,&nbsp;V. K. Kebkal,&nbsp;E. V. Khramov,&nbsp;I. V. Kharuk,&nbsp;M. M. Kolbin,&nbsp;S. O. Koligaev,&nbsp;K. V. Konischev,&nbsp;A. V. Korobchenko,&nbsp;A. P. Koshechkin,&nbsp;V. A. Kozhin,&nbsp;M. V. Kruglov,&nbsp;V. F. Kulepov,&nbsp;Y. E. Lemeshev,&nbsp;M. B. Milenin,&nbsp;R. R. Mirgazov,&nbsp;D. V. Naumov,&nbsp;A. S. Nikolaev,&nbsp;D. P. Petukhov,&nbsp;E. N. Pliskovsky,&nbsp;M. I. Rozanov,&nbsp;V. D. Rushay,&nbsp;E. V. Ryabov,&nbsp;G. B. Safronov,&nbsp;B. A. Shaybonov,&nbsp;D. Seitova,&nbsp;S. D. Shilkin,&nbsp;E. V. Shirokov,&nbsp;F. Šimkovic,&nbsp;A. E. Sirenko,&nbsp;A. V. Skurikhin,&nbsp;A. G. Solovjev,&nbsp;M. N. Sorokovikov,&nbsp;I. Štekl,&nbsp;A. P. Stromakov,&nbsp;O. V. Suvorova,&nbsp;V. A. Tabolenko,&nbsp;B. B. Ulzutuev,&nbsp;Y. V. Yablokova,&nbsp;D. N. Zaborov,&nbsp;S. I. Zavyalov,&nbsp;D. Y. Zvezdov","doi":"10.3103/S0027134924701674","DOIUrl":null,"url":null,"abstract":"<p>Neutrino is considered as a superior astronomical messenger thanks to not being deflected or absorbed by interstellar medium. Detection of neutrinos from distant high-energy cosmic accelerators has been a long-standing problem emerged in the last quarter of 20th century. Only in 2013 was the diffuse cosmic neutrino flux discovered by the 1 km<span>\\({}^{3}\\)</span>—scale IceCube neutrino telescope at the South Pole. Nevertheless evidence for sources of cosmic neutrino remain weak up to the present day. The Baikal-GVD neutrino telescope being built in Lake Baikal is the largest detector of this kind in the Northern Hemisphere. Presently an instrumented volume of the detector is about 0.5 km<span>\\({}^{3}\\)</span> which allows the telescope to start contributing to the cosmic neutrino origin quest. In this report we discuss the motivation present the status and main results of the Baikal-GVD experiment.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"79 1 supplement","pages":"210 - 219"},"PeriodicalIF":0.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Results From the Baikal-GVD Neutrino Telescope\",\"authors\":\"V. A. Allakhverdyan,&nbsp;A. D. Avrorin,&nbsp;A. V. Avrorin,&nbsp;V. M. Aynutdinov,&nbsp;Z. Bardačová,&nbsp;I. A. Belolaptikov,&nbsp;E. A. Bondarev,&nbsp;I. V. Borina,&nbsp;N. M. Budnev,&nbsp;V. A. Chadymov,&nbsp;A. S. Chepurnov,&nbsp;V. Y. Dik,&nbsp;G. V. Domogatsky,&nbsp;A. A. Doroshenko,&nbsp;R. Dvornický,&nbsp;A. N. Dyachok,&nbsp;Zh.-A. M. Dzhilkibaev,&nbsp;E. Eckerová,&nbsp;T. V. Elzhov,&nbsp;L. Fajt,&nbsp;V. N. Fomin,&nbsp;A. R. Gafarov,&nbsp;K. V. Golubkov,&nbsp;N. S. Gorshkov,&nbsp;T. I. Gress,&nbsp;K. G. Kebkal,&nbsp;V. K. Kebkal,&nbsp;E. V. Khramov,&nbsp;I. V. Kharuk,&nbsp;M. M. Kolbin,&nbsp;S. O. Koligaev,&nbsp;K. V. Konischev,&nbsp;A. V. Korobchenko,&nbsp;A. P. Koshechkin,&nbsp;V. A. Kozhin,&nbsp;M. V. Kruglov,&nbsp;V. F. Kulepov,&nbsp;Y. E. Lemeshev,&nbsp;M. B. Milenin,&nbsp;R. R. Mirgazov,&nbsp;D. V. Naumov,&nbsp;A. S. Nikolaev,&nbsp;D. P. Petukhov,&nbsp;E. N. Pliskovsky,&nbsp;M. I. Rozanov,&nbsp;V. D. Rushay,&nbsp;E. V. Ryabov,&nbsp;G. B. Safronov,&nbsp;B. A. Shaybonov,&nbsp;D. Seitova,&nbsp;S. D. Shilkin,&nbsp;E. V. Shirokov,&nbsp;F. Šimkovic,&nbsp;A. E. Sirenko,&nbsp;A. V. Skurikhin,&nbsp;A. G. Solovjev,&nbsp;M. N. Sorokovikov,&nbsp;I. Štekl,&nbsp;A. P. Stromakov,&nbsp;O. V. Suvorova,&nbsp;V. A. Tabolenko,&nbsp;B. B. Ulzutuev,&nbsp;Y. V. Yablokova,&nbsp;D. N. Zaborov,&nbsp;S. I. Zavyalov,&nbsp;D. Y. Zvezdov\",\"doi\":\"10.3103/S0027134924701674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neutrino is considered as a superior astronomical messenger thanks to not being deflected or absorbed by interstellar medium. Detection of neutrinos from distant high-energy cosmic accelerators has been a long-standing problem emerged in the last quarter of 20th century. Only in 2013 was the diffuse cosmic neutrino flux discovered by the 1 km<span>\\\\({}^{3}\\\\)</span>—scale IceCube neutrino telescope at the South Pole. Nevertheless evidence for sources of cosmic neutrino remain weak up to the present day. The Baikal-GVD neutrino telescope being built in Lake Baikal is the largest detector of this kind in the Northern Hemisphere. Presently an instrumented volume of the detector is about 0.5 km<span>\\\\({}^{3}\\\\)</span> which allows the telescope to start contributing to the cosmic neutrino origin quest. In this report we discuss the motivation present the status and main results of the Baikal-GVD experiment.</p>\",\"PeriodicalId\":711,\"journal\":{\"name\":\"Moscow University Physics Bulletin\",\"volume\":\"79 1 supplement\",\"pages\":\"210 - 219\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Physics Bulletin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027134924701674\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134924701674","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于不被星际介质偏转或吸收,中微子被认为是优越的天文信使。从遥远的高能宇宙加速器中探测中微子是20世纪最后25年出现的一个长期存在的问题。直到2013年,位于南极的1公里\({}^{3}\)规模的冰立方中微子望远镜才发现了漫射宇宙中微子通量。然而,迄今为止,关于宇宙中微子来源的证据仍然很薄弱。在贝加尔湖建造的贝加尔湖gvd中微子望远镜是北半球同类探测器中最大的。目前,探测器的仪器体积约为0.5公里\({}^{3}\),这使得望远镜开始为宇宙中微子起源的探索做出贡献。本文讨论了贝加尔湖- gvd试验的动机、现状和主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent Results From the Baikal-GVD Neutrino Telescope

Recent Results From the Baikal-GVD Neutrino Telescope

Neutrino is considered as a superior astronomical messenger thanks to not being deflected or absorbed by interstellar medium. Detection of neutrinos from distant high-energy cosmic accelerators has been a long-standing problem emerged in the last quarter of 20th century. Only in 2013 was the diffuse cosmic neutrino flux discovered by the 1 km\({}^{3}\)—scale IceCube neutrino telescope at the South Pole. Nevertheless evidence for sources of cosmic neutrino remain weak up to the present day. The Baikal-GVD neutrino telescope being built in Lake Baikal is the largest detector of this kind in the Northern Hemisphere. Presently an instrumented volume of the detector is about 0.5 km\({}^{3}\) which allows the telescope to start contributing to the cosmic neutrino origin quest. In this report we discuss the motivation present the status and main results of the Baikal-GVD experiment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow University Physics Bulletin
Moscow University Physics Bulletin PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
0.00%
发文量
129
审稿时长
6-12 weeks
期刊介绍: Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信