流形微积分中齐次函子的分类

IF 0.7 4区 数学 Q2 MATHEMATICS
Paul Arnaud Songhafouo Tsopméné, Donald Stanley
{"title":"流形微积分中齐次函子的分类","authors":"Paul Arnaud Songhafouo Tsopméné,&nbsp;Donald Stanley","doi":"10.1007/s40062-025-00362-z","DOIUrl":null,"url":null,"abstract":"<div><p>For any object <i>A</i> in a simplicial model category <span>\\(\\mathcal {M}\\)</span>, we construct a topological space <span>\\(\\hat{A}\\)</span> which classifies homogeneous functors whose value on <i>k</i> open balls is equivalent to <i>A</i>. This extends a classification result of Weiss for homogeneous functors into topological spaces.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"20 1","pages":"63 - 103"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of homogeneous functors in manifold calculus\",\"authors\":\"Paul Arnaud Songhafouo Tsopméné,&nbsp;Donald Stanley\",\"doi\":\"10.1007/s40062-025-00362-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For any object <i>A</i> in a simplicial model category <span>\\\\(\\\\mathcal {M}\\\\)</span>, we construct a topological space <span>\\\\(\\\\hat{A}\\\\)</span> which classifies homogeneous functors whose value on <i>k</i> open balls is equivalent to <i>A</i>. This extends a classification result of Weiss for homogeneous functors into topological spaces.</p></div>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"20 1\",\"pages\":\"63 - 103\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-025-00362-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-025-00362-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于简单模型范畴\(\mathcal {M}\)中的任意对象A,我们构造了一个拓扑空间\(\hat{A}\),该空间对k个开球上的值等于A的齐次函子进行分类,从而将Weiss关于齐次函子的分类结果推广到拓扑空间中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Classification of homogeneous functors in manifold calculus

Classification of homogeneous functors in manifold calculus

For any object A in a simplicial model category \(\mathcal {M}\), we construct a topological space \(\hat{A}\) which classifies homogeneous functors whose value on k open balls is equivalent to A. This extends a classification result of Weiss for homogeneous functors into topological spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信