用神经网络分离tWb相关单顶夸克产生过程中左右异常耦合矢量

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
E. E. Boos, L. V. Dudko, V. E. Bunichev, M. A. Perfilov, P. V. Volkov
{"title":"用神经网络分离tWb相关单顶夸克产生过程中左右异常耦合矢量","authors":"E. E. Boos,&nbsp;L. V. Dudko,&nbsp;V. E. Bunichev,&nbsp;M. A. Perfilov,&nbsp;P. V. Volkov","doi":"10.3103/S0027134924701625","DOIUrl":null,"url":null,"abstract":"<p>The paper presents initial steps to distinguish the contribution of anomalous operators in Wtb vertex from the Standard Model for final state processes tWb using a deep neural network. A scenario with vector left- and right-handed operators at the Wtb vertex is considered as an example and as a most difficult for the separation. The deep neural network was trained on preselected kinematic variables that exhibit different behavior for the Standard Model cases and the presence of a right vector operator at the Wtb vertex. The presented results can be interpreted in the context of further prospects for searching for anomalous operators in Wtb vertex for the processes of single- and double-resonant production of top quarks with the final state tWb.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"79 1 supplement","pages":"179 - 183"},"PeriodicalIF":0.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Usage of Neural Networks for Separating Anomalous Left and Right Vector Wtb Couplings in the Processes of tWb Associated Sngle Top Quark Production\",\"authors\":\"E. E. Boos,&nbsp;L. V. Dudko,&nbsp;V. E. Bunichev,&nbsp;M. A. Perfilov,&nbsp;P. V. Volkov\",\"doi\":\"10.3103/S0027134924701625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents initial steps to distinguish the contribution of anomalous operators in Wtb vertex from the Standard Model for final state processes tWb using a deep neural network. A scenario with vector left- and right-handed operators at the Wtb vertex is considered as an example and as a most difficult for the separation. The deep neural network was trained on preselected kinematic variables that exhibit different behavior for the Standard Model cases and the presence of a right vector operator at the Wtb vertex. The presented results can be interpreted in the context of further prospects for searching for anomalous operators in Wtb vertex for the processes of single- and double-resonant production of top quarks with the final state tWb.</p>\",\"PeriodicalId\":711,\"journal\":{\"name\":\"Moscow University Physics Bulletin\",\"volume\":\"79 1 supplement\",\"pages\":\"179 - 183\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Physics Bulletin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027134924701625\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134924701625","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了用深度神经网络区分Wtb顶点异常算子与最终状态过程tWb标准模型的贡献的初步步骤。在Wtb顶点具有向量左手和右手操作符的场景被认为是一个例子,也是最难分离的场景。深度神经网络在预先选择的运动变量上进行训练,这些变量在标准模型情况下表现出不同的行为,并且在Wtb顶点存在右向量算子。本文的研究结果可以在进一步寻找最终态为tWb的顶夸克的单共振和双共振过程的Wtb顶点异常算子的背景下进行解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Usage of Neural Networks for Separating Anomalous Left and Right Vector Wtb Couplings in the Processes of tWb Associated Sngle Top Quark Production

Usage of Neural Networks for Separating Anomalous Left and Right Vector Wtb Couplings in the Processes of tWb Associated Sngle Top Quark Production

The paper presents initial steps to distinguish the contribution of anomalous operators in Wtb vertex from the Standard Model for final state processes tWb using a deep neural network. A scenario with vector left- and right-handed operators at the Wtb vertex is considered as an example and as a most difficult for the separation. The deep neural network was trained on preselected kinematic variables that exhibit different behavior for the Standard Model cases and the presence of a right vector operator at the Wtb vertex. The presented results can be interpreted in the context of further prospects for searching for anomalous operators in Wtb vertex for the processes of single- and double-resonant production of top quarks with the final state tWb.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow University Physics Bulletin
Moscow University Physics Bulletin PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
0.00%
发文量
129
审稿时长
6-12 weeks
期刊介绍: Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信