岩石圈震源的电磁场特征

IF 0.9 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
N. G. Mazur, V. A. Pilipenko, E. N. Fedorov
{"title":"岩石圈震源的电磁场特征","authors":"N. G. Mazur,&nbsp;V. A. Pilipenko,&nbsp;E. N. Fedorov","doi":"10.1134/S106935132470099X","DOIUrl":null,"url":null,"abstract":"<p>One of the key problems in the search for electromagnetic precursors of earthquakes is the possibility of separating magnetospheric and seismogenic disturbances. This paper presents the results of using a model that enables us to calculate the ultra-low-frequency (ULF) fields on the Earth’s surface created by a linear horizontal current of finite length. This model simulates the occurrence of mechano-electric transformers during a shift along a fault zone at the final stage of the earthquake preparation. The calculations show several characteristics of the field of the underground source in comparison with the field of ionospheric disturbances. If the vertical component <span>\\({{B}_{z}}\\)</span> of the magnetic field of an ionospheric disturbance is small compared to the horizontal component <span>\\({{{\\mathbf{B}}}_{ \\bot }}\\)</span>, then for an underground source <span>\\(\\left| {{{B}_{z}}} \\right| &gt; \\left| {{{{\\mathbf{B}}}_{ \\bot }}} \\right|\\)</span> in the vicinity of the source. For ionospheric sources, this apparent impedance (i.e., the <span>\\({{{{\\mu }_{0}}\\left| {{{{\\mathbf{E}}}_{ \\bot }}} \\right|} \\mathord{\\left/ {\\vphantom {{{{\\mu }_{0}}\\left| {{{{\\mathbf{E}}}_{ \\bot }}} \\right|} {\\left| {{{{\\mathbf{B}}}_{ \\bot }}} \\right|}}} \\right. \\kern-0em} {\\left| {{{{\\mathbf{B}}}_{ \\bot }}} \\right|}}\\)</span> ratio) coincides with the impedance of the Earth’s surface <i>Z</i><sub><i>g</i></sub>, while the impedance of disturbances created by the lithospheric source may exceed <i>Z</i><sub><i>g</i></sub>, up to order of magnitude in the source vicinity. An underground current source can create a vertical electric field <span>\\({{E}_{z}}\\)</span> of significant magnitude. This is due to the vertical current continuity at the Earth–atmosphere interface, which acts as a powerful “amplifier” with a coefficient determined by the ratio of the complex conductivities of the Earth’s crust and air. Calculations have shown that these ideas are incorrect. The vertical component <span>\\({{E}_{z}}\\)</span> on the Earth’s surface is of the same order of magnitude as the transverse component <span>\\({{{\\mathbf{E}}}_{ \\bot }}\\)</span>. There have been suggestions to use short-baseline gradient measurements to reduce the contribution of large-scale ionospheric disturbances. The calculation of the field structure has revealed that amplitude-phase gradients in the vicinity of an underground source are highly variable and may provide ambiguous results.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"60 6","pages":"1004 - 1015"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Features of the Electromagnetic Field of Lithospheric Sources\",\"authors\":\"N. G. Mazur,&nbsp;V. A. Pilipenko,&nbsp;E. N. Fedorov\",\"doi\":\"10.1134/S106935132470099X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the key problems in the search for electromagnetic precursors of earthquakes is the possibility of separating magnetospheric and seismogenic disturbances. This paper presents the results of using a model that enables us to calculate the ultra-low-frequency (ULF) fields on the Earth’s surface created by a linear horizontal current of finite length. This model simulates the occurrence of mechano-electric transformers during a shift along a fault zone at the final stage of the earthquake preparation. The calculations show several characteristics of the field of the underground source in comparison with the field of ionospheric disturbances. If the vertical component <span>\\\\({{B}_{z}}\\\\)</span> of the magnetic field of an ionospheric disturbance is small compared to the horizontal component <span>\\\\({{{\\\\mathbf{B}}}_{ \\\\bot }}\\\\)</span>, then for an underground source <span>\\\\(\\\\left| {{{B}_{z}}} \\\\right| &gt; \\\\left| {{{{\\\\mathbf{B}}}_{ \\\\bot }}} \\\\right|\\\\)</span> in the vicinity of the source. For ionospheric sources, this apparent impedance (i.e., the <span>\\\\({{{{\\\\mu }_{0}}\\\\left| {{{{\\\\mathbf{E}}}_{ \\\\bot }}} \\\\right|} \\\\mathord{\\\\left/ {\\\\vphantom {{{{\\\\mu }_{0}}\\\\left| {{{{\\\\mathbf{E}}}_{ \\\\bot }}} \\\\right|} {\\\\left| {{{{\\\\mathbf{B}}}_{ \\\\bot }}} \\\\right|}}} \\\\right. \\\\kern-0em} {\\\\left| {{{{\\\\mathbf{B}}}_{ \\\\bot }}} \\\\right|}}\\\\)</span> ratio) coincides with the impedance of the Earth’s surface <i>Z</i><sub><i>g</i></sub>, while the impedance of disturbances created by the lithospheric source may exceed <i>Z</i><sub><i>g</i></sub>, up to order of magnitude in the source vicinity. An underground current source can create a vertical electric field <span>\\\\({{E}_{z}}\\\\)</span> of significant magnitude. This is due to the vertical current continuity at the Earth–atmosphere interface, which acts as a powerful “amplifier” with a coefficient determined by the ratio of the complex conductivities of the Earth’s crust and air. Calculations have shown that these ideas are incorrect. The vertical component <span>\\\\({{E}_{z}}\\\\)</span> on the Earth’s surface is of the same order of magnitude as the transverse component <span>\\\\({{{\\\\mathbf{E}}}_{ \\\\bot }}\\\\)</span>. There have been suggestions to use short-baseline gradient measurements to reduce the contribution of large-scale ionospheric disturbances. The calculation of the field structure has revealed that amplitude-phase gradients in the vicinity of an underground source are highly variable and may provide ambiguous results.</p>\",\"PeriodicalId\":602,\"journal\":{\"name\":\"Izvestiya, Physics of the Solid Earth\",\"volume\":\"60 6\",\"pages\":\"1004 - 1015\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya, Physics of the Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106935132470099X\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S106935132470099X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

寻找地震电磁前兆的关键问题之一是分离磁层扰动和发震扰动的可能性。本文介绍了用一个模型计算有限长度的线性水平电流在地球表面产生的超低频场的结果。该模型模拟了在地震准备的最后阶段沿断裂带移动期间机电变压器的发生。计算结果表明,与电离层扰动场相比,地下源场具有若干特征。如果电离层扰动磁场的垂直分量\({{B}_{z}}\)比水平分量\({{{\mathbf{B}}}_{ \bot }}\)小,那么对于震源附近的地下震源\(\left| {{{B}_{z}}} \right| > \left| {{{{\mathbf{B}}}_{ \bot }}} \right|\)。对于电离层震源,其视阻抗(即\({{{{\mu }_{0}}\left| {{{{\mathbf{E}}}_{ \bot }}} \right|} \mathord{\left/ {\vphantom {{{{\mu }_{0}}\left| {{{{\mathbf{E}}}_{ \bot }}} \right|} {\left| {{{{\mathbf{B}}}_{ \bot }}} \right|}}} \right. \kern-0em} {\left| {{{{\mathbf{B}}}_{ \bot }}} \right|}}\)比值)与地球表面的阻抗Zg一致,而岩石圈震源产生的扰动阻抗可能超过Zg,在震源附近达到数量级。地下电流源可以产生一个垂直电场\({{E}_{z}}\)的显著量级。这是由于地球-大气界面的垂直电流连续性,它作为一个强大的“放大器”,其系数由地壳和空气的复杂电导率之比决定。计算表明,这些想法是不正确的。地球表面的垂直分量\({{E}_{z}}\)与横向分量\({{{\mathbf{E}}}_{ \bot }}\)的数量级相同。有人建议使用短基线梯度测量来减少大规模电离层扰动的贡献。场结构的计算表明,地下震源附近的幅相梯度变化很大,可能提供不明确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Features of the Electromagnetic Field of Lithospheric Sources

Features of the Electromagnetic Field of Lithospheric Sources

One of the key problems in the search for electromagnetic precursors of earthquakes is the possibility of separating magnetospheric and seismogenic disturbances. This paper presents the results of using a model that enables us to calculate the ultra-low-frequency (ULF) fields on the Earth’s surface created by a linear horizontal current of finite length. This model simulates the occurrence of mechano-electric transformers during a shift along a fault zone at the final stage of the earthquake preparation. The calculations show several characteristics of the field of the underground source in comparison with the field of ionospheric disturbances. If the vertical component \({{B}_{z}}\) of the magnetic field of an ionospheric disturbance is small compared to the horizontal component \({{{\mathbf{B}}}_{ \bot }}\), then for an underground source \(\left| {{{B}_{z}}} \right| > \left| {{{{\mathbf{B}}}_{ \bot }}} \right|\) in the vicinity of the source. For ionospheric sources, this apparent impedance (i.e., the \({{{{\mu }_{0}}\left| {{{{\mathbf{E}}}_{ \bot }}} \right|} \mathord{\left/ {\vphantom {{{{\mu }_{0}}\left| {{{{\mathbf{E}}}_{ \bot }}} \right|} {\left| {{{{\mathbf{B}}}_{ \bot }}} \right|}}} \right. \kern-0em} {\left| {{{{\mathbf{B}}}_{ \bot }}} \right|}}\) ratio) coincides with the impedance of the Earth’s surface Zg, while the impedance of disturbances created by the lithospheric source may exceed Zg, up to order of magnitude in the source vicinity. An underground current source can create a vertical electric field \({{E}_{z}}\) of significant magnitude. This is due to the vertical current continuity at the Earth–atmosphere interface, which acts as a powerful “amplifier” with a coefficient determined by the ratio of the complex conductivities of the Earth’s crust and air. Calculations have shown that these ideas are incorrect. The vertical component \({{E}_{z}}\) on the Earth’s surface is of the same order of magnitude as the transverse component \({{{\mathbf{E}}}_{ \bot }}\). There have been suggestions to use short-baseline gradient measurements to reduce the contribution of large-scale ionospheric disturbances. The calculation of the field structure has revealed that amplitude-phase gradients in the vicinity of an underground source are highly variable and may provide ambiguous results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya, Physics of the Solid Earth
Izvestiya, Physics of the Solid Earth 地学-地球化学与地球物理
CiteScore
1.60
自引率
30.00%
发文量
60
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信