平方循环图的3切配合物的壳性

IF 0.7 4区 数学 Q2 MATHEMATICS
Pratiksha Chauhan, Samir Shukla, Kumar Vinayak
{"title":"平方循环图的3切配合物的壳性","authors":"Pratiksha Chauhan,&nbsp;Samir Shukla,&nbsp;Kumar Vinayak","doi":"10.1007/s40062-025-00365-w","DOIUrl":null,"url":null,"abstract":"<div><p>For a positive integer <i>k</i>, the <i>k</i>-cut complex of a graph <i>G</i> is the simplicial complex whose facets are the <span>\\((|V(G)|-k)\\)</span>-subsets <span>\\(\\sigma \\)</span> of the vertex set <i>V</i>(<i>G</i>) of <i>G</i> such that the induced subgraph of <i>G</i> on <span>\\(V(G) \\setminus \\sigma \\)</span> is disconnected. These complexes first appeared in the master thesis of Denker and were further studied by Bayer et al. (SIAM J Discrete Math 38(2):1630–1675, 2024). In the same article, Bayer et al. conjectured that for <span>\\(k \\ge 3\\)</span>, the <i>k</i>-cut complexes of squared cycle graphs are shellable. Moreover, they also conjectured about the Betti numbers of these complexes when <span>\\(k=3\\)</span>. In this article, we prove these conjectures for <span>\\(k=3\\)</span>.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"20 1","pages":"163 - 193"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shellability of 3-cut complexes of squared cycle graphs\",\"authors\":\"Pratiksha Chauhan,&nbsp;Samir Shukla,&nbsp;Kumar Vinayak\",\"doi\":\"10.1007/s40062-025-00365-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a positive integer <i>k</i>, the <i>k</i>-cut complex of a graph <i>G</i> is the simplicial complex whose facets are the <span>\\\\((|V(G)|-k)\\\\)</span>-subsets <span>\\\\(\\\\sigma \\\\)</span> of the vertex set <i>V</i>(<i>G</i>) of <i>G</i> such that the induced subgraph of <i>G</i> on <span>\\\\(V(G) \\\\setminus \\\\sigma \\\\)</span> is disconnected. These complexes first appeared in the master thesis of Denker and were further studied by Bayer et al. (SIAM J Discrete Math 38(2):1630–1675, 2024). In the same article, Bayer et al. conjectured that for <span>\\\\(k \\\\ge 3\\\\)</span>, the <i>k</i>-cut complexes of squared cycle graphs are shellable. Moreover, they also conjectured about the Betti numbers of these complexes when <span>\\\\(k=3\\\\)</span>. In this article, we prove these conjectures for <span>\\\\(k=3\\\\)</span>.</p></div>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"20 1\",\"pages\":\"163 - 193\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-025-00365-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-025-00365-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于正整数k,图G的k切复形是简单复形,其面是G的顶点集V(G)的\((|V(G)|-k)\) -子集\(\sigma \),使得G在\(V(G) \setminus \sigma \)上的诱导子图是不连通的。这些复合物最早出现在Denker的硕士论文中,Bayer等人对其进行了进一步研究(SIAM J Discrete Math 38(2): 1630-1675, 2024)。在同一篇文章中,Bayer等人推测对于\(k \ge 3\),平方循环图的k-cut配合物是可壳化的。此外,他们还推测了这些复合物的贝蒂数,当\(k=3\)。在本文中,我们将为\(k=3\)证明这些猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shellability of 3-cut complexes of squared cycle graphs

For a positive integer k, the k-cut complex of a graph G is the simplicial complex whose facets are the \((|V(G)|-k)\)-subsets \(\sigma \) of the vertex set V(G) of G such that the induced subgraph of G on \(V(G) \setminus \sigma \) is disconnected. These complexes first appeared in the master thesis of Denker and were further studied by Bayer et al. (SIAM J Discrete Math 38(2):1630–1675, 2024). In the same article, Bayer et al. conjectured that for \(k \ge 3\), the k-cut complexes of squared cycle graphs are shellable. Moreover, they also conjectured about the Betti numbers of these complexes when \(k=3\). In this article, we prove these conjectures for \(k=3\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信