具有移动低秩模式的鲁棒多任务回归

IF 0.8 3区 数学 Q2 MATHEMATICS
Junfeng Cui, Guanghui Wang, Fengyi Song, Xiaoyan Ma, Changliang Zou
{"title":"具有移动低秩模式的鲁棒多任务回归","authors":"Junfeng Cui,&nbsp;Guanghui Wang,&nbsp;Fengyi Song,&nbsp;Xiaoyan Ma,&nbsp;Changliang Zou","doi":"10.1007/s10114-025-3362-8","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the problem of multi-task regression with time-varying low-rank patterns, where the collected data may be contaminated by heavy-tailed distributions and/or outliers. Our approach is based on a piecewise robust multi-task learning formulation, in which a robust loss function—not necessarily to be convex, but with a bounded derivative—is used, and each piecewise low-rank pattern is induced by a nuclear norm regularization term. We propose using the composite gradient descent algorithm to obtain stationary points within a data segment and employing the dynamic programming algorithm to determine the optimal segmentation. The theoretical properties of the detected number and time points of pattern shifts are studied under mild conditions. Numerical results confirm the effectiveness of our method.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 2","pages":"677 - 702"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Multi-Task Regression with Shifting Low-Rank Patterns\",\"authors\":\"Junfeng Cui,&nbsp;Guanghui Wang,&nbsp;Fengyi Song,&nbsp;Xiaoyan Ma,&nbsp;Changliang Zou\",\"doi\":\"10.1007/s10114-025-3362-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the problem of multi-task regression with time-varying low-rank patterns, where the collected data may be contaminated by heavy-tailed distributions and/or outliers. Our approach is based on a piecewise robust multi-task learning formulation, in which a robust loss function—not necessarily to be convex, but with a bounded derivative—is used, and each piecewise low-rank pattern is induced by a nuclear norm regularization term. We propose using the composite gradient descent algorithm to obtain stationary points within a data segment and employing the dynamic programming algorithm to determine the optimal segmentation. The theoretical properties of the detected number and time points of pattern shifts are studied under mild conditions. Numerical results confirm the effectiveness of our method.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 2\",\"pages\":\"677 - 702\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-3362-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3362-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑具有时变低秩模式的多任务回归问题,其中收集的数据可能受到重尾分布和/或异常值的污染。我们的方法基于分段鲁棒多任务学习公式,其中使用鲁棒损失函数-不一定是凸的,但具有有界导数-并且每个分段低秩模式由核范数正则化项诱导。我们提出使用复合梯度下降算法来获得数据段内的平稳点,并使用动态规划算法来确定最优分割。研究了在温和条件下模式位移检测数和时间点的理论性质。数值结果证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Multi-Task Regression with Shifting Low-Rank Patterns

We consider the problem of multi-task regression with time-varying low-rank patterns, where the collected data may be contaminated by heavy-tailed distributions and/or outliers. Our approach is based on a piecewise robust multi-task learning formulation, in which a robust loss function—not necessarily to be convex, but with a bounded derivative—is used, and each piecewise low-rank pattern is induced by a nuclear norm regularization term. We propose using the composite gradient descent algorithm to obtain stationary points within a data segment and employing the dynamic programming algorithm to determine the optimal segmentation. The theoretical properties of the detected number and time points of pattern shifts are studied under mild conditions. Numerical results confirm the effectiveness of our method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信