预测分析方法与贝叶斯优化温和促进集成模型糖尿病诊断

Behnaz Motamedi, Balázs Villányi
{"title":"预测分析方法与贝叶斯优化温和促进集成模型糖尿病诊断","authors":"Behnaz Motamedi,&nbsp;Balázs Villányi","doi":"10.1016/j.cmpbup.2025.100184","DOIUrl":null,"url":null,"abstract":"<div><div>Effective disease management necessitates the accurate and timely prediction of lung cancer and diabetes. Machine learning (ML) based models have garnered attention in the realm of predictive healthcare, with ensemble methods, in particular, bolstering algorithms to improve classification performance. Nevertheless, enhancing boosting algorithms to achieve superior predictive accuracy continues to be a difficult task. This study proposes a Bayesian-Optimized GentleBoost Ensemble (BOGBEnsemble) to improve classification performance for diabetes prediction (DiP) and lung cancer prediction (LCP). Two Kaggle datasets—a diabetes dataset from multiple healthcare providers and a Survey Lung Cancer dataset from existent medical records—are utilized. Data preprocessing involves outlier removal, min–max normalization, class balancing, and Pearson correlation-based feature selection. The GentleBoost classifier is optimized using Bayesian hyperparameter tuning, focusing on learning rate and the number of weak learners, and is validated using 10-fold cross-validation. BOGBEnsemble is evaluated in comparison to leading models, such as Random Forest (RF), Adaptive Boosting (AdaBoost), Logistic Boosting (LogitBoost), Random Undersampling Boosting (RUSBoost), conventional GentleBoost, and Multi-Layer Perceptron (MLP) architectures. The DiP-BOGBEnsemble achieves a 99.26% accuracy, 98.94% precision, 99.60% recall, 99.26% F1-score, 99.46% F2-score, 98.51% MCC, 98.51 Kappa, 0.0041 FOR, and 22,606.75 DOR. The LC-BOGBEnsemble achieves a 96.51% accuracy, 97.83% precision, 94.76% recall, 96.28% F1-score, 95.36% F2-score, MCC of 93.03%, Kappa of 92.99, FOR of 0.0462, and DOR of 932.15. This study highlights the potential of BOGBEnsemble as a clinically viable tool for early disease detection and decision support, paving the way for more reliable and personalized healthcare strategies.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100184"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A predictive analytics approach with Bayesian-optimized gentle boosting ensemble models for diabetes diagnosis\",\"authors\":\"Behnaz Motamedi,&nbsp;Balázs Villányi\",\"doi\":\"10.1016/j.cmpbup.2025.100184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective disease management necessitates the accurate and timely prediction of lung cancer and diabetes. Machine learning (ML) based models have garnered attention in the realm of predictive healthcare, with ensemble methods, in particular, bolstering algorithms to improve classification performance. Nevertheless, enhancing boosting algorithms to achieve superior predictive accuracy continues to be a difficult task. This study proposes a Bayesian-Optimized GentleBoost Ensemble (BOGBEnsemble) to improve classification performance for diabetes prediction (DiP) and lung cancer prediction (LCP). Two Kaggle datasets—a diabetes dataset from multiple healthcare providers and a Survey Lung Cancer dataset from existent medical records—are utilized. Data preprocessing involves outlier removal, min–max normalization, class balancing, and Pearson correlation-based feature selection. The GentleBoost classifier is optimized using Bayesian hyperparameter tuning, focusing on learning rate and the number of weak learners, and is validated using 10-fold cross-validation. BOGBEnsemble is evaluated in comparison to leading models, such as Random Forest (RF), Adaptive Boosting (AdaBoost), Logistic Boosting (LogitBoost), Random Undersampling Boosting (RUSBoost), conventional GentleBoost, and Multi-Layer Perceptron (MLP) architectures. The DiP-BOGBEnsemble achieves a 99.26% accuracy, 98.94% precision, 99.60% recall, 99.26% F1-score, 99.46% F2-score, 98.51% MCC, 98.51 Kappa, 0.0041 FOR, and 22,606.75 DOR. The LC-BOGBEnsemble achieves a 96.51% accuracy, 97.83% precision, 94.76% recall, 96.28% F1-score, 95.36% F2-score, MCC of 93.03%, Kappa of 92.99, FOR of 0.0462, and DOR of 932.15. This study highlights the potential of BOGBEnsemble as a clinically viable tool for early disease detection and decision support, paving the way for more reliable and personalized healthcare strategies.</div></div>\",\"PeriodicalId\":72670,\"journal\":{\"name\":\"Computer methods and programs in biomedicine update\",\"volume\":\"7 \",\"pages\":\"Article 100184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine update\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666990025000084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有效的疾病管理需要准确、及时地预测肺癌和糖尿病。基于机器学习(ML)的模型在预测性医疗保健领域引起了人们的关注,特别是集成方法,可以增强算法以提高分类性能。然而,增强增强算法以达到更高的预测精度仍然是一项艰巨的任务。本研究提出了一种贝叶斯优化的绅士boost集成(BOGBEnsemble)来提高糖尿病预测(DiP)和肺癌预测(LCP)的分类性能。使用了两个Kaggle数据集——来自多个医疗保健提供者的糖尿病数据集和来自现有医疗记录的Survey Lung Cancer数据集。数据预处理包括异常值去除、最小-最大归一化、类平衡和基于Pearson相关性的特征选择。使用贝叶斯超参数调优对GentleBoost分类器进行优化,重点关注学习率和弱学习器的数量,并使用10倍交叉验证进行验证。与随机森林(RF)、自适应增强(AdaBoost)、逻辑增强(LogitBoost)、随机不足采样增强(RUSBoost)、传统的GentleBoost和多层感知器(MLP)架构等领先模型相比,对BOGBEnsemble进行了评估。DiP-BOGBEnsemble的准确率为99.26%,精密度为98.94%,召回率为99.60%,f1评分为99.26%,f2评分为99.46%,MCC为98.51%,Kappa为98.51,FOR为0.0041,DOR为22,606.75。LC-BOGBEnsemble的准确率为96.51%,精密度为97.83%,召回率为94.76%,f1评分为96.28%,f2评分为95.36%,MCC为93.03%,Kappa为92.99,FOR为0.0462,DOR为932.15。这项研究强调了BOGBEnsemble作为早期疾病检测和决策支持的临床可行工具的潜力,为更可靠和个性化的医疗保健策略铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A predictive analytics approach with Bayesian-optimized gentle boosting ensemble models for diabetes diagnosis
Effective disease management necessitates the accurate and timely prediction of lung cancer and diabetes. Machine learning (ML) based models have garnered attention in the realm of predictive healthcare, with ensemble methods, in particular, bolstering algorithms to improve classification performance. Nevertheless, enhancing boosting algorithms to achieve superior predictive accuracy continues to be a difficult task. This study proposes a Bayesian-Optimized GentleBoost Ensemble (BOGBEnsemble) to improve classification performance for diabetes prediction (DiP) and lung cancer prediction (LCP). Two Kaggle datasets—a diabetes dataset from multiple healthcare providers and a Survey Lung Cancer dataset from existent medical records—are utilized. Data preprocessing involves outlier removal, min–max normalization, class balancing, and Pearson correlation-based feature selection. The GentleBoost classifier is optimized using Bayesian hyperparameter tuning, focusing on learning rate and the number of weak learners, and is validated using 10-fold cross-validation. BOGBEnsemble is evaluated in comparison to leading models, such as Random Forest (RF), Adaptive Boosting (AdaBoost), Logistic Boosting (LogitBoost), Random Undersampling Boosting (RUSBoost), conventional GentleBoost, and Multi-Layer Perceptron (MLP) architectures. The DiP-BOGBEnsemble achieves a 99.26% accuracy, 98.94% precision, 99.60% recall, 99.26% F1-score, 99.46% F2-score, 98.51% MCC, 98.51 Kappa, 0.0041 FOR, and 22,606.75 DOR. The LC-BOGBEnsemble achieves a 96.51% accuracy, 97.83% precision, 94.76% recall, 96.28% F1-score, 95.36% F2-score, MCC of 93.03%, Kappa of 92.99, FOR of 0.0462, and DOR of 932.15. This study highlights the potential of BOGBEnsemble as a clinically viable tool for early disease detection and decision support, paving the way for more reliable and personalized healthcare strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信