基于起点-目的地矩阵观测的车辆自动识别传感器的可靠部署

IF 7.6 1区 工程技术 Q1 TRANSPORTATION SCIENCE & TECHNOLOGY
Hessam Arefkhani, Yousef Shafahi
{"title":"基于起点-目的地矩阵观测的车辆自动识别传感器的可靠部署","authors":"Hessam Arefkhani,&nbsp;Yousef Shafahi","doi":"10.1016/j.trc.2025.105045","DOIUrl":null,"url":null,"abstract":"<div><div>An Origin-Destination Matrix (ODM) is fundamental in transportation studies, as it provides essential insights into travel patterns and demand. The ODM can be constructed using data collected from Automatic Vehicle Identification (AVI) sensors strategically installed on network links. However, the quality of the ODM can be significantly affected by the fact that sensors are subject to failure in real-world scenarios. This issue underscores the importance of ODM reliability because it can significantly influence the study outcomes. Some researchers focused on incorporating sensor failure considerations into the Sensor Location Problem for ODM observation. One common approach is to consider a predefined level of reliability for ODM and try to find a sensor deployment with the minimum number of sensors that meet the reliability constraint. In this study, we first show by a counter-example that the most recently developed reliable sensor location model for ODM observation using the mentioned approach does not guarantee the predefined reliability level for ODM. Second, we introduce a new reliability term for ODM observation and incorporate it into our new reliable AVI sensor location models specifically designed to observe ODM and route flows. Additionally, we develop reliable AVI sensor location models that accommodate partial observations of ODM and route flows while adhering to budget constraints. Third, a greedy algorithm and a Genetic-Based Algorithm (GBA) are developed to solve the proposed models for middle to large-scale networks. Finally, the proposed models are applied to some numerical examples to illustrate their applicability and effectiveness. The numerical examples revealed the models’ capability to identify optimal sensor locations for reliable observation of ODM and route flows considering sensor failure. Moreover, the results highlighted the efficiency of the GBA as an efficient solution method, especially for medium and large-scale networks.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"173 ","pages":"Article 105045"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliable deployment of automatic vehicle identification sensors for origin-destination matrix observation\",\"authors\":\"Hessam Arefkhani,&nbsp;Yousef Shafahi\",\"doi\":\"10.1016/j.trc.2025.105045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An Origin-Destination Matrix (ODM) is fundamental in transportation studies, as it provides essential insights into travel patterns and demand. The ODM can be constructed using data collected from Automatic Vehicle Identification (AVI) sensors strategically installed on network links. However, the quality of the ODM can be significantly affected by the fact that sensors are subject to failure in real-world scenarios. This issue underscores the importance of ODM reliability because it can significantly influence the study outcomes. Some researchers focused on incorporating sensor failure considerations into the Sensor Location Problem for ODM observation. One common approach is to consider a predefined level of reliability for ODM and try to find a sensor deployment with the minimum number of sensors that meet the reliability constraint. In this study, we first show by a counter-example that the most recently developed reliable sensor location model for ODM observation using the mentioned approach does not guarantee the predefined reliability level for ODM. Second, we introduce a new reliability term for ODM observation and incorporate it into our new reliable AVI sensor location models specifically designed to observe ODM and route flows. Additionally, we develop reliable AVI sensor location models that accommodate partial observations of ODM and route flows while adhering to budget constraints. Third, a greedy algorithm and a Genetic-Based Algorithm (GBA) are developed to solve the proposed models for middle to large-scale networks. Finally, the proposed models are applied to some numerical examples to illustrate their applicability and effectiveness. The numerical examples revealed the models’ capability to identify optimal sensor locations for reliable observation of ODM and route flows considering sensor failure. Moreover, the results highlighted the efficiency of the GBA as an efficient solution method, especially for medium and large-scale networks.</div></div>\",\"PeriodicalId\":54417,\"journal\":{\"name\":\"Transportation Research Part C-Emerging Technologies\",\"volume\":\"173 \",\"pages\":\"Article 105045\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part C-Emerging Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968090X2500049X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X2500049X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

起源-目的地矩阵(ODM)是交通运输研究的基础,因为它提供了对旅行模式和需求的基本见解。ODM可以使用从安装在网络链路上的自动车辆识别(AVI)传感器收集的数据来构建。但是,ODM的质量可能会受到传感器在实际场景中发生故障这一事实的显著影响。这个问题强调了ODM可靠性的重要性,因为它可以显著影响研究结果。一些研究者将传感器失效的考虑纳入ODM观测的传感器定位问题。一种常见的方法是考虑ODM的预定义可靠性级别,并尝试找到具有满足可靠性约束的最小传感器数量的传感器部署。在本研究中,我们首先通过一个反例表明,使用上述方法的最新开发的ODM观测可靠传感器定位模型不能保证ODM的预定义可靠性水平。其次,我们引入了一个新的ODM观测可靠性术语,并将其纳入我们专门设计的用于观测ODM和路由流的新的可靠AVI传感器定位模型中。此外,我们开发了可靠的AVI传感器定位模型,以适应ODM和路线流的部分观测,同时坚持预算限制。第三,提出了贪心算法和基于遗传的算法(GBA)来求解所提出的中大规模网络模型。最后,通过数值算例验证了所提模型的适用性和有效性。数值算例表明,在考虑传感器故障的情况下,该模型能够确定最优传感器位置,从而可靠地观测ODM和路由流。此外,研究结果强调了大湾区作为一种有效的解决方法的效率,特别是对于大中型网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliable deployment of automatic vehicle identification sensors for origin-destination matrix observation
An Origin-Destination Matrix (ODM) is fundamental in transportation studies, as it provides essential insights into travel patterns and demand. The ODM can be constructed using data collected from Automatic Vehicle Identification (AVI) sensors strategically installed on network links. However, the quality of the ODM can be significantly affected by the fact that sensors are subject to failure in real-world scenarios. This issue underscores the importance of ODM reliability because it can significantly influence the study outcomes. Some researchers focused on incorporating sensor failure considerations into the Sensor Location Problem for ODM observation. One common approach is to consider a predefined level of reliability for ODM and try to find a sensor deployment with the minimum number of sensors that meet the reliability constraint. In this study, we first show by a counter-example that the most recently developed reliable sensor location model for ODM observation using the mentioned approach does not guarantee the predefined reliability level for ODM. Second, we introduce a new reliability term for ODM observation and incorporate it into our new reliable AVI sensor location models specifically designed to observe ODM and route flows. Additionally, we develop reliable AVI sensor location models that accommodate partial observations of ODM and route flows while adhering to budget constraints. Third, a greedy algorithm and a Genetic-Based Algorithm (GBA) are developed to solve the proposed models for middle to large-scale networks. Finally, the proposed models are applied to some numerical examples to illustrate their applicability and effectiveness. The numerical examples revealed the models’ capability to identify optimal sensor locations for reliable observation of ODM and route flows considering sensor failure. Moreover, the results highlighted the efficiency of the GBA as an efficient solution method, especially for medium and large-scale networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.80
自引率
12.00%
发文量
332
审稿时长
64 days
期刊介绍: Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信