波动率的乘因子模型

IF 9.9 3区 经济学 Q1 ECONOMICS
Yi Ding , Robert Engle , Yingying Li , Xinghua Zheng
{"title":"波动率的乘因子模型","authors":"Yi Ding ,&nbsp;Robert Engle ,&nbsp;Yingying Li ,&nbsp;Xinghua Zheng","doi":"10.1016/j.jeconom.2025.105959","DOIUrl":null,"url":null,"abstract":"<div><div>Facilitated with high-frequency observations, we introduce a remarkably parsimonious one-factor volatility model that offers a novel perspective for comprehending daily volatilities of a large number of stocks. Specifically, we propose a multiplicative volatility factor (MVF) model, where stock daily variance is represented by a common variance factor and a multiplicative idiosyncratic component. We demonstrate compelling empirical evidence supporting our model and provide statistical properties for two simple estimation methods. The MVF model reflects important properties of volatilities, applies to both individual stocks and portfolios, can be easily estimated, and leads to exceptional predictive performance in both US stocks and global equity indices.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105959"},"PeriodicalIF":9.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicative factor model for volatility\",\"authors\":\"Yi Ding ,&nbsp;Robert Engle ,&nbsp;Yingying Li ,&nbsp;Xinghua Zheng\",\"doi\":\"10.1016/j.jeconom.2025.105959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Facilitated with high-frequency observations, we introduce a remarkably parsimonious one-factor volatility model that offers a novel perspective for comprehending daily volatilities of a large number of stocks. Specifically, we propose a multiplicative volatility factor (MVF) model, where stock daily variance is represented by a common variance factor and a multiplicative idiosyncratic component. We demonstrate compelling empirical evidence supporting our model and provide statistical properties for two simple estimation methods. The MVF model reflects important properties of volatilities, applies to both individual stocks and portfolios, can be easily estimated, and leads to exceptional predictive performance in both US stocks and global equity indices.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"249 \",\"pages\":\"Article 105959\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407625000132\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625000132","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

在高频观测的帮助下,我们引入了一个非常简洁的单因素波动模型,为理解大量股票的每日波动提供了一个新的视角。具体来说,我们提出了一个乘法波动因子(MVF)模型,其中股票的日方差由一个共同方差因子和一个乘法特质成分表示。我们展示了令人信服的经验证据支持我们的模型,并提供了两种简单估计方法的统计特性。MVF模型反映了波动性的重要属性,适用于个股和投资组合,可以很容易地估计,并导致美国股市和全球股指的卓越预测表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicative factor model for volatility
Facilitated with high-frequency observations, we introduce a remarkably parsimonious one-factor volatility model that offers a novel perspective for comprehending daily volatilities of a large number of stocks. Specifically, we propose a multiplicative volatility factor (MVF) model, where stock daily variance is represented by a common variance factor and a multiplicative idiosyncratic component. We demonstrate compelling empirical evidence supporting our model and provide statistical properties for two simple estimation methods. The MVF model reflects important properties of volatilities, applies to both individual stocks and portfolios, can be easily estimated, and leads to exceptional predictive performance in both US stocks and global equity indices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信