Junliang Li , Hui Li , Nan Niu , Yazhou Zhu , Siyu Hou , Wei Zhao
{"title":"NRF-1促进fundc1介导的线粒体自噬,作为缺氧诱导心肌细胞损伤的保护机制","authors":"Junliang Li , Hui Li , Nan Niu , Yazhou Zhu , Siyu Hou , Wei Zhao","doi":"10.1016/j.yexcr.2025.114472","DOIUrl":null,"url":null,"abstract":"<div><div>Hypoxia-induced apoptosis and mitochondrial dysfunction in cardiomyocytes are involved in the mechanisms of heart failure. Our previous studies have confirmed that NRF-1 alleviates hypoxia-induced injury by promoting mitochondrial function and inhibiting apoptosis in cardiomyocytes. However, the mechanism by which NRF-1 attenuates hypoxia-induced injury in cardiomyocytes is still unclear. Mitophagy, a selective autophagy, has recently shown a remarkable correlation with hypoxia-induced cardiomyocyte injury. In this study, we evaluated whether NRF-1 protects cardiomyocytes from hypoxia-induced injury by regulating mitophagy. The findings indicate that hypoxia prevents H9c2 cells from growing, encourages mitochondrial dysfunction, and triggers mitophagy. In addition, promoting mitophagy by rapamycin reduces hypoxia-induced injury in H9c2 cells. Overexpression of NRF-1 in hypoxia-induced H9c2 cells promotes mitophagy and alleviates cell injury, and this effect can be inhibited by 3-MA. Further study found that NRF-1 promotes the expression of FUNDC1 by binding to its promoter region. Knockdown of FUNDC1 in NRF-1 over-expression H9c2 cells inhibited mitophagy and aggravated hypoxia-induced injury. In conclusion, our study suggests that NRF-1 protects against hypoxia-induced injury by regulating FUNDC1-mediated mitophagy in cardiomyocytes.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"446 1","pages":"Article 114472"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NRF-1 promotes FUNDC1-mediated mitophagy as a protective mechanism against hypoxia-induced injury in cardiomyocytes\",\"authors\":\"Junliang Li , Hui Li , Nan Niu , Yazhou Zhu , Siyu Hou , Wei Zhao\",\"doi\":\"10.1016/j.yexcr.2025.114472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hypoxia-induced apoptosis and mitochondrial dysfunction in cardiomyocytes are involved in the mechanisms of heart failure. Our previous studies have confirmed that NRF-1 alleviates hypoxia-induced injury by promoting mitochondrial function and inhibiting apoptosis in cardiomyocytes. However, the mechanism by which NRF-1 attenuates hypoxia-induced injury in cardiomyocytes is still unclear. Mitophagy, a selective autophagy, has recently shown a remarkable correlation with hypoxia-induced cardiomyocyte injury. In this study, we evaluated whether NRF-1 protects cardiomyocytes from hypoxia-induced injury by regulating mitophagy. The findings indicate that hypoxia prevents H9c2 cells from growing, encourages mitochondrial dysfunction, and triggers mitophagy. In addition, promoting mitophagy by rapamycin reduces hypoxia-induced injury in H9c2 cells. Overexpression of NRF-1 in hypoxia-induced H9c2 cells promotes mitophagy and alleviates cell injury, and this effect can be inhibited by 3-MA. Further study found that NRF-1 promotes the expression of FUNDC1 by binding to its promoter region. Knockdown of FUNDC1 in NRF-1 over-expression H9c2 cells inhibited mitophagy and aggravated hypoxia-induced injury. In conclusion, our study suggests that NRF-1 protects against hypoxia-induced injury by regulating FUNDC1-mediated mitophagy in cardiomyocytes.</div></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"446 1\",\"pages\":\"Article 114472\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482725000680\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482725000680","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
NRF-1 promotes FUNDC1-mediated mitophagy as a protective mechanism against hypoxia-induced injury in cardiomyocytes
Hypoxia-induced apoptosis and mitochondrial dysfunction in cardiomyocytes are involved in the mechanisms of heart failure. Our previous studies have confirmed that NRF-1 alleviates hypoxia-induced injury by promoting mitochondrial function and inhibiting apoptosis in cardiomyocytes. However, the mechanism by which NRF-1 attenuates hypoxia-induced injury in cardiomyocytes is still unclear. Mitophagy, a selective autophagy, has recently shown a remarkable correlation with hypoxia-induced cardiomyocyte injury. In this study, we evaluated whether NRF-1 protects cardiomyocytes from hypoxia-induced injury by regulating mitophagy. The findings indicate that hypoxia prevents H9c2 cells from growing, encourages mitochondrial dysfunction, and triggers mitophagy. In addition, promoting mitophagy by rapamycin reduces hypoxia-induced injury in H9c2 cells. Overexpression of NRF-1 in hypoxia-induced H9c2 cells promotes mitophagy and alleviates cell injury, and this effect can be inhibited by 3-MA. Further study found that NRF-1 promotes the expression of FUNDC1 by binding to its promoter region. Knockdown of FUNDC1 in NRF-1 over-expression H9c2 cells inhibited mitophagy and aggravated hypoxia-induced injury. In conclusion, our study suggests that NRF-1 protects against hypoxia-induced injury by regulating FUNDC1-mediated mitophagy in cardiomyocytes.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.