A.M. Adam , A.K. Diab , Zainab M.H. El-Qahtani , P. Petkov , M. Ataalla
{"title":"Cu2Se和Cu2-xAgxSe合金的结构和热电性能研究","authors":"A.M. Adam , A.K. Diab , Zainab M.H. El-Qahtani , P. Petkov , M. Ataalla","doi":"10.1016/j.ssc.2025.115877","DOIUrl":null,"url":null,"abstract":"<div><div>An easy and promising avenue to recover waste heat is about to be opened by thermoelectric power materials. Cu<sub>2</sub>Se and based thermoelectric materials were synthesized and investigated in this piece of work. The thermoelectric properties of Cu<sub>2</sub>Se were successfully tailored with an additive of Ag-traces. Cu<sub>2-x</sub>Ag<sub>x</sub>Se alloys (x = 0.01, 0.03, 0.05) were synthesized via simple melting at 1200 K. It was found that the addition of Ag-doping resulted in significant decrease of the electrical conductivity along with an increase of the Seebeck coefficient due to the presence of point-defects and the phonon scattering. The thermoelectric power factor was calculated and found at interesting values at high temperatures. The highest power factor was recorded at 60 μW/m.K<sup>2</sup>, observed for the measuring temperature of 473 K. Electronic thermal conductivity was significantly reduced because of the scattering due to Ag-doping and presence of defects. Also, existence of secondary phase helped to reduce the lattice and the total thermal conductivity. Finally, increased ZT was achieved for the Ag-doped alloys. The findings of this work showed that the maximum ZT value is achieved for Cu<sub>1.95</sub>Ag<sub>0.05</sub>Se material at 0.03, obtained at 473 K.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"399 ","pages":"Article 115877"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations of structural and thermoelectric properties of Cu2Se and Cu2-xAgxSe alloys\",\"authors\":\"A.M. Adam , A.K. Diab , Zainab M.H. El-Qahtani , P. Petkov , M. Ataalla\",\"doi\":\"10.1016/j.ssc.2025.115877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An easy and promising avenue to recover waste heat is about to be opened by thermoelectric power materials. Cu<sub>2</sub>Se and based thermoelectric materials were synthesized and investigated in this piece of work. The thermoelectric properties of Cu<sub>2</sub>Se were successfully tailored with an additive of Ag-traces. Cu<sub>2-x</sub>Ag<sub>x</sub>Se alloys (x = 0.01, 0.03, 0.05) were synthesized via simple melting at 1200 K. It was found that the addition of Ag-doping resulted in significant decrease of the electrical conductivity along with an increase of the Seebeck coefficient due to the presence of point-defects and the phonon scattering. The thermoelectric power factor was calculated and found at interesting values at high temperatures. The highest power factor was recorded at 60 μW/m.K<sup>2</sup>, observed for the measuring temperature of 473 K. Electronic thermal conductivity was significantly reduced because of the scattering due to Ag-doping and presence of defects. Also, existence of secondary phase helped to reduce the lattice and the total thermal conductivity. Finally, increased ZT was achieved for the Ag-doped alloys. The findings of this work showed that the maximum ZT value is achieved for Cu<sub>1.95</sub>Ag<sub>0.05</sub>Se material at 0.03, obtained at 473 K.</div></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"399 \",\"pages\":\"Article 115877\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038109825000523\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109825000523","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Investigations of structural and thermoelectric properties of Cu2Se and Cu2-xAgxSe alloys
An easy and promising avenue to recover waste heat is about to be opened by thermoelectric power materials. Cu2Se and based thermoelectric materials were synthesized and investigated in this piece of work. The thermoelectric properties of Cu2Se were successfully tailored with an additive of Ag-traces. Cu2-xAgxSe alloys (x = 0.01, 0.03, 0.05) were synthesized via simple melting at 1200 K. It was found that the addition of Ag-doping resulted in significant decrease of the electrical conductivity along with an increase of the Seebeck coefficient due to the presence of point-defects and the phonon scattering. The thermoelectric power factor was calculated and found at interesting values at high temperatures. The highest power factor was recorded at 60 μW/m.K2, observed for the measuring temperature of 473 K. Electronic thermal conductivity was significantly reduced because of the scattering due to Ag-doping and presence of defects. Also, existence of secondary phase helped to reduce the lattice and the total thermal conductivity. Finally, increased ZT was achieved for the Ag-doped alloys. The findings of this work showed that the maximum ZT value is achieved for Cu1.95Ag0.05Se material at 0.03, obtained at 473 K.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.