反铁磁拓扑绝缘体薄膜EuSn2As2的量子度量非线性霍尔效应

Hung-Ju Tien , Hsin Lin , Liang Fu , Tay-Rong Chang
{"title":"反铁磁拓扑绝缘体薄膜EuSn2As2的量子度量非线性霍尔效应","authors":"Hung-Ju Tien ,&nbsp;Hsin Lin ,&nbsp;Liang Fu ,&nbsp;Tay-Rong Chang","doi":"10.1016/j.mtquan.2025.100027","DOIUrl":null,"url":null,"abstract":"<div><div>The quantum geometric structure of electrons introduces fundamental insights into understanding quantum effects in materials. One notable manifestation is the non-linear Hall effect (NLHE), which has drawn considerable interest for its potential to overcome the intrinsic limitations of semiconductor diodes at low input power and high frequency. In this study, we investigate NLHE stemming from the real part of the quantum geometric tensor, specifically the quantum metric, in an antiferromagnetic topological material, EuSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>As<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, using density functional theory. Our calculations predict a remarkable NLHE arising from a symmetry-protected, single Type-II surface Dirac cone in the even-numbered-layer two-dimensional slab thin-film, yielding a non-linear Hall conductivity exceeding 20 mA/V<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>—an order of magnitude larger than previously reported. This single Dirac band dispersion represents the simplest model for generating NLHE, positioning the EuSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>As<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> thin-film as a “hydrogen atom” for NLHE systems. Additionally, we observe NLHE from band-edge states near the Fermi level. Our findings also reveal that 30% phosphorus (P) doping can double the non-linear Hall conductivity. With its substantial and tunable NLHE, EuSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>As<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> thin-films present promising applications in antiferromagnetic spintronics and rectification devices.</div></div>","PeriodicalId":100894,"journal":{"name":"Materials Today Quantum","volume":"5 ","pages":"Article 100027"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum metric non-linear Hall effect in an antiferromagnetic topological insulator thin-film EuSn2As2\",\"authors\":\"Hung-Ju Tien ,&nbsp;Hsin Lin ,&nbsp;Liang Fu ,&nbsp;Tay-Rong Chang\",\"doi\":\"10.1016/j.mtquan.2025.100027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The quantum geometric structure of electrons introduces fundamental insights into understanding quantum effects in materials. One notable manifestation is the non-linear Hall effect (NLHE), which has drawn considerable interest for its potential to overcome the intrinsic limitations of semiconductor diodes at low input power and high frequency. In this study, we investigate NLHE stemming from the real part of the quantum geometric tensor, specifically the quantum metric, in an antiferromagnetic topological material, EuSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>As<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, using density functional theory. Our calculations predict a remarkable NLHE arising from a symmetry-protected, single Type-II surface Dirac cone in the even-numbered-layer two-dimensional slab thin-film, yielding a non-linear Hall conductivity exceeding 20 mA/V<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>—an order of magnitude larger than previously reported. This single Dirac band dispersion represents the simplest model for generating NLHE, positioning the EuSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>As<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> thin-film as a “hydrogen atom” for NLHE systems. Additionally, we observe NLHE from band-edge states near the Fermi level. Our findings also reveal that 30% phosphorus (P) doping can double the non-linear Hall conductivity. With its substantial and tunable NLHE, EuSn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>As<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> thin-films present promising applications in antiferromagnetic spintronics and rectification devices.</div></div>\",\"PeriodicalId\":100894,\"journal\":{\"name\":\"Materials Today Quantum\",\"volume\":\"5 \",\"pages\":\"Article 100027\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950257825000058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Quantum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950257825000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子的量子几何结构为理解材料中的量子效应提供了基本的见解。一个值得注意的表现是非线性霍尔效应(NLHE),它已经引起了相当大的兴趣,因为它有潜力克服半导体二极管在低输入功率和高频率下的固有限制。在本研究中,我们利用密度泛函理论研究了反铁磁拓扑材料EuSn2As2中量子几何张量的实部,特别是量子度量的NLHE。我们的计算预测了偶数层二维平板薄膜中对称保护的单个ii型表面狄拉克锥产生的显著NLHE,产生超过20 mA/ v2的非线性霍尔电导率-比先前报道的要大一个数量级。这种单狄拉克色散代表了产生NLHE的最简单模型,将EuSn2As2薄膜定位为NLHE系统的“氢原子”。此外,我们还从费米能级附近的带边态观测到NLHE。我们的研究结果还表明,30%磷(P)掺杂可以使非线性霍尔电导率增加一倍。EuSn2As2薄膜在反铁磁自旋电子学和整流器件中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum metric non-linear Hall effect in an antiferromagnetic topological insulator thin-film EuSn2As2
The quantum geometric structure of electrons introduces fundamental insights into understanding quantum effects in materials. One notable manifestation is the non-linear Hall effect (NLHE), which has drawn considerable interest for its potential to overcome the intrinsic limitations of semiconductor diodes at low input power and high frequency. In this study, we investigate NLHE stemming from the real part of the quantum geometric tensor, specifically the quantum metric, in an antiferromagnetic topological material, EuSn2As2, using density functional theory. Our calculations predict a remarkable NLHE arising from a symmetry-protected, single Type-II surface Dirac cone in the even-numbered-layer two-dimensional slab thin-film, yielding a non-linear Hall conductivity exceeding 20 mA/V2—an order of magnitude larger than previously reported. This single Dirac band dispersion represents the simplest model for generating NLHE, positioning the EuSn2As2 thin-film as a “hydrogen atom” for NLHE systems. Additionally, we observe NLHE from band-edge states near the Fermi level. Our findings also reveal that 30% phosphorus (P) doping can double the non-linear Hall conductivity. With its substantial and tunable NLHE, EuSn2As2 thin-films present promising applications in antiferromagnetic spintronics and rectification devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信