Rosa Selenia Guerra-Resendez, Samantha LeGoff Lydon, Alex J. Ma, Guy C. Bedford, Daniel R. Reed, Sunghwan Kim, Erik R. Terán, Tomoki Nishiguchi, Mario Escobar, Andrew R. DiNardo and Isaac B. Hilton*,
{"title":"在人细胞系和原代人T细胞中合理设计具有不同甲基转移酶和基因沉默活性的基于CRISPR/ cas9的DNA甲基转移酶的特性","authors":"Rosa Selenia Guerra-Resendez, Samantha LeGoff Lydon, Alex J. Ma, Guy C. Bedford, Daniel R. Reed, Sunghwan Kim, Erik R. Terán, Tomoki Nishiguchi, Mario Escobar, Andrew R. DiNardo and Isaac B. Hilton*, ","doi":"10.1021/acssynbio.4c0056910.1021/acssynbio.4c00569","DOIUrl":null,"url":null,"abstract":"<p >Nuclease-deactivated Cas (dCas) proteins can be used to recruit epigenetic effectors, and this class of epigenetic editing technologies has revolutionized the ability to synthetically control the mammalian epigenome and transcriptome. DNA methylation is one of the most important and well-characterized epigenetic modifications in mammals, and while many different forms of dCas-based DNA methyltransferases (dCas-DNMTs) have been developed for programmable DNA methylation, these tools are frequently poorly tolerated and/or lowly expressed in mammalian cell types. Further, the use of dCas-DNMTs has largely been restricted to cell lines, which limits mechanistic insights in karyotypically normal contexts and hampers translational utility in the longer term. Here, we extend previous insights into the rational design of the catalytic core of the mammalian DNMT3A methyltransferase and test three dCas9-DNMT3A/3L variants across different human cell lines and in primary donor-derived human T cells. We find that mutations within the catalytic core of DNMT3A stabilize the expression of dCas9-DNMT3A/3L fusion proteins in Jurkat T cells without sacrificing DNA methylation or gene-silencing performance. We also show that these rationally engineered mutations in DNMT3A alter DNA methylation profiles at loci targeted with dCas9-DNMT3A/3L in cell lines and donor-derived human T cells. Finally, we leverage the transcriptionally repressive effects of dCas9-DNMT3A/3L variants to functionally link the expression of a key immunomodulatory transcription factor to cytokine secretion in donor-derived T cells. Overall, our work expands the synthetic biology toolkit for epigenetic editing and provides a roadmap for the use of engineered dCas-based DNMTs in primary mammalian cell types.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 2","pages":"384–397 384–397"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Rationally Designed CRISPR/Cas9-Based DNA Methyltransferases with Distinct Methyltransferase and Gene Silencing Activities in Human Cell Lines and Primary Human T Cells\",\"authors\":\"Rosa Selenia Guerra-Resendez, Samantha LeGoff Lydon, Alex J. Ma, Guy C. Bedford, Daniel R. Reed, Sunghwan Kim, Erik R. Terán, Tomoki Nishiguchi, Mario Escobar, Andrew R. DiNardo and Isaac B. Hilton*, \",\"doi\":\"10.1021/acssynbio.4c0056910.1021/acssynbio.4c00569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nuclease-deactivated Cas (dCas) proteins can be used to recruit epigenetic effectors, and this class of epigenetic editing technologies has revolutionized the ability to synthetically control the mammalian epigenome and transcriptome. DNA methylation is one of the most important and well-characterized epigenetic modifications in mammals, and while many different forms of dCas-based DNA methyltransferases (dCas-DNMTs) have been developed for programmable DNA methylation, these tools are frequently poorly tolerated and/or lowly expressed in mammalian cell types. Further, the use of dCas-DNMTs has largely been restricted to cell lines, which limits mechanistic insights in karyotypically normal contexts and hampers translational utility in the longer term. Here, we extend previous insights into the rational design of the catalytic core of the mammalian DNMT3A methyltransferase and test three dCas9-DNMT3A/3L variants across different human cell lines and in primary donor-derived human T cells. We find that mutations within the catalytic core of DNMT3A stabilize the expression of dCas9-DNMT3A/3L fusion proteins in Jurkat T cells without sacrificing DNA methylation or gene-silencing performance. We also show that these rationally engineered mutations in DNMT3A alter DNA methylation profiles at loci targeted with dCas9-DNMT3A/3L in cell lines and donor-derived human T cells. Finally, we leverage the transcriptionally repressive effects of dCas9-DNMT3A/3L variants to functionally link the expression of a key immunomodulatory transcription factor to cytokine secretion in donor-derived T cells. Overall, our work expands the synthetic biology toolkit for epigenetic editing and provides a roadmap for the use of engineered dCas-based DNMTs in primary mammalian cell types.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\"14 2\",\"pages\":\"384–397 384–397\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssynbio.4c00569\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.4c00569","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Characterization of Rationally Designed CRISPR/Cas9-Based DNA Methyltransferases with Distinct Methyltransferase and Gene Silencing Activities in Human Cell Lines and Primary Human T Cells
Nuclease-deactivated Cas (dCas) proteins can be used to recruit epigenetic effectors, and this class of epigenetic editing technologies has revolutionized the ability to synthetically control the mammalian epigenome and transcriptome. DNA methylation is one of the most important and well-characterized epigenetic modifications in mammals, and while many different forms of dCas-based DNA methyltransferases (dCas-DNMTs) have been developed for programmable DNA methylation, these tools are frequently poorly tolerated and/or lowly expressed in mammalian cell types. Further, the use of dCas-DNMTs has largely been restricted to cell lines, which limits mechanistic insights in karyotypically normal contexts and hampers translational utility in the longer term. Here, we extend previous insights into the rational design of the catalytic core of the mammalian DNMT3A methyltransferase and test three dCas9-DNMT3A/3L variants across different human cell lines and in primary donor-derived human T cells. We find that mutations within the catalytic core of DNMT3A stabilize the expression of dCas9-DNMT3A/3L fusion proteins in Jurkat T cells without sacrificing DNA methylation or gene-silencing performance. We also show that these rationally engineered mutations in DNMT3A alter DNA methylation profiles at loci targeted with dCas9-DNMT3A/3L in cell lines and donor-derived human T cells. Finally, we leverage the transcriptionally repressive effects of dCas9-DNMT3A/3L variants to functionally link the expression of a key immunomodulatory transcription factor to cytokine secretion in donor-derived T cells. Overall, our work expands the synthetic biology toolkit for epigenetic editing and provides a roadmap for the use of engineered dCas-based DNMTs in primary mammalian cell types.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.