PUTrack:通过渐进提示改进水下目标跟踪

IF 9.9 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Qiuyang Zhang;Wei Song;Cong Liu;Minghua Zhang
{"title":"PUTrack:通过渐进提示改进水下目标跟踪","authors":"Qiuyang Zhang;Wei Song;Cong Liu;Minghua Zhang","doi":"10.1109/TII.2025.3538056","DOIUrl":null,"url":null,"abstract":"Existing underwater tracking methods can be categorized into two paradigms: first, “enhance-then-track”—first enhancing the quality of the input image, then employing an open-air tracker; second, “track-then-process”—initially using an open-air tracker, followed by calibrating the prediction box. These methods that lack unified objectives among the modules impair tracking performance. To overcome this, we propose a novel end-to-end framework called prompting underwater tracking (PUTrack). It adapts the open-air tracker to the scenario-specific (underwater) tracking task by deploying a set of underwater prompters at the lateral side of an existing open-air tracker, and injecting the generated prompts layer-by-layer into the encoder. Experiments on various underwater tracking datasets demonstrate that the method significantly improves the underwater performance of the tracker by introducing only 0.6 M trainable parameters (0.4% of total parameters). Moreover, to drive the development of underwater tracking, we construct a high quality underwater tracking dataset that is manually annotated with 139 k frames, which exceeds the total number of frames in previous underwater tracking datasets. It provides 90 test sets rich in challenge properties and 200 training sets of diverse kinds.","PeriodicalId":13301,"journal":{"name":"IEEE Transactions on Industrial Informatics","volume":"21 5","pages":"3986-3995"},"PeriodicalIF":9.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PUTrack: Improved Underwater Object Tracking via Progressive Prompting\",\"authors\":\"Qiuyang Zhang;Wei Song;Cong Liu;Minghua Zhang\",\"doi\":\"10.1109/TII.2025.3538056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing underwater tracking methods can be categorized into two paradigms: first, “enhance-then-track”—first enhancing the quality of the input image, then employing an open-air tracker; second, “track-then-process”—initially using an open-air tracker, followed by calibrating the prediction box. These methods that lack unified objectives among the modules impair tracking performance. To overcome this, we propose a novel end-to-end framework called prompting underwater tracking (PUTrack). It adapts the open-air tracker to the scenario-specific (underwater) tracking task by deploying a set of underwater prompters at the lateral side of an existing open-air tracker, and injecting the generated prompts layer-by-layer into the encoder. Experiments on various underwater tracking datasets demonstrate that the method significantly improves the underwater performance of the tracker by introducing only 0.6 M trainable parameters (0.4% of total parameters). Moreover, to drive the development of underwater tracking, we construct a high quality underwater tracking dataset that is manually annotated with 139 k frames, which exceeds the total number of frames in previous underwater tracking datasets. It provides 90 test sets rich in challenge properties and 200 training sets of diverse kinds.\",\"PeriodicalId\":13301,\"journal\":{\"name\":\"IEEE Transactions on Industrial Informatics\",\"volume\":\"21 5\",\"pages\":\"3986-3995\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industrial Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10892342/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Informatics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10892342/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现有的水下跟踪方法可分为两种模式:一种是“先增强后跟踪”,即先提高输入图像的质量,然后采用露天跟踪器;第二步,“跟踪-然后处理”——首先使用露天跟踪器,然后校准预测盒。这些方法在模块之间缺乏统一的目标,影响了跟踪性能。为了克服这个问题,我们提出了一种新的端到端框架,称为提示水下跟踪(PUTrack)。它通过在现有露天跟踪器的侧面部署一组水下提示器,并将生成的提示逐层注入编码器,使露天跟踪器适应特定场景(水下)跟踪任务。在各种水下跟踪数据集上的实验表明,该方法仅引入0.6 M个可训练参数(占总参数的0.4%),即可显著提高跟踪器的水下性能。此外,为了推动水下跟踪的发展,我们构建了一个高质量的水下跟踪数据集,该数据集人工标注了139k帧,超过了以往水下跟踪数据集的总帧数。它提供了90个具有丰富挑战属性的测试集和200个不同种类的训练集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PUTrack: Improved Underwater Object Tracking via Progressive Prompting
Existing underwater tracking methods can be categorized into two paradigms: first, “enhance-then-track”—first enhancing the quality of the input image, then employing an open-air tracker; second, “track-then-process”—initially using an open-air tracker, followed by calibrating the prediction box. These methods that lack unified objectives among the modules impair tracking performance. To overcome this, we propose a novel end-to-end framework called prompting underwater tracking (PUTrack). It adapts the open-air tracker to the scenario-specific (underwater) tracking task by deploying a set of underwater prompters at the lateral side of an existing open-air tracker, and injecting the generated prompts layer-by-layer into the encoder. Experiments on various underwater tracking datasets demonstrate that the method significantly improves the underwater performance of the tracker by introducing only 0.6 M trainable parameters (0.4% of total parameters). Moreover, to drive the development of underwater tracking, we construct a high quality underwater tracking dataset that is manually annotated with 139 k frames, which exceeds the total number of frames in previous underwater tracking datasets. It provides 90 test sets rich in challenge properties and 200 training sets of diverse kinds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Industrial Informatics
IEEE Transactions on Industrial Informatics 工程技术-工程:工业
CiteScore
24.10
自引率
8.90%
发文量
1202
审稿时长
5.1 months
期刊介绍: The IEEE Transactions on Industrial Informatics is a multidisciplinary journal dedicated to publishing technical papers that connect theory with practical applications of informatics in industrial settings. It focuses on the utilization of information in intelligent, distributed, and agile industrial automation and control systems. The scope includes topics such as knowledge-based and AI-enhanced automation, intelligent computer control systems, flexible and collaborative manufacturing, industrial informatics in software-defined vehicles and robotics, computer vision, industrial cyber-physical and industrial IoT systems, real-time and networked embedded systems, security in industrial processes, industrial communications, systems interoperability, and human-machine interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信