Yijun Hao;Shusen Yang;Fang Li;Yifan Zhang;Cong Zhao;Xuebin Ren;Peng Zhao;Chenren Xu;Shibo Wang
{"title":"T3 Planner:跨结构约束光、IP和路由拓扑的多阶段规划","authors":"Yijun Hao;Shusen Yang;Fang Li;Yifan Zhang;Cong Zhao;Xuebin Ren;Peng Zhao;Chenren Xu;Shibo Wang","doi":"10.1109/JSAC.2025.3543511","DOIUrl":null,"url":null,"abstract":"Network topology planning is an essential multi-phase process to build and jointly optimize the multi-layer network topologies in wide-area networks (WANs). Most existing practices target single-phase/layer planning, and are incapable of satisfying all rigorous topological structure constraints (e.g., dual-homing rings) defined by network standards and operators, especially in large-scale networks. These significantly limit their usability and performance in production networks. We consider a general topology planning problem with typical structure constraints over three essential phases (greenfield, reconfiguration, and site expansion) and topological layers (optical, IP, and routing topologies). We present, T3Planner, a novel practical solver to this problem in production. Specifically, we develop a structure-driven encoder based on graph neural network (GNN) for concise structure encoding, and design a new learning framework with optical-centric layer compression/reconstruction and rule-aided reinforcement learning (RL) for fast convergence and high performance. Extensive experiments on nine real topologies demonstrate that T3Planner scales to large optical networks with hundreds of sites, saves 46.6% cost, and supports <inline-formula> <tex-math>$3.12\\times $ </tex-math></inline-formula> more demand when compared to related existing approaches.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 5","pages":"1823-1839"},"PeriodicalIF":17.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"T³Planner: Multi-Phase Planning Across Structure-Constrained Optical, IP, and Routing Topologies\",\"authors\":\"Yijun Hao;Shusen Yang;Fang Li;Yifan Zhang;Cong Zhao;Xuebin Ren;Peng Zhao;Chenren Xu;Shibo Wang\",\"doi\":\"10.1109/JSAC.2025.3543511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network topology planning is an essential multi-phase process to build and jointly optimize the multi-layer network topologies in wide-area networks (WANs). Most existing practices target single-phase/layer planning, and are incapable of satisfying all rigorous topological structure constraints (e.g., dual-homing rings) defined by network standards and operators, especially in large-scale networks. These significantly limit their usability and performance in production networks. We consider a general topology planning problem with typical structure constraints over three essential phases (greenfield, reconfiguration, and site expansion) and topological layers (optical, IP, and routing topologies). We present, T3Planner, a novel practical solver to this problem in production. Specifically, we develop a structure-driven encoder based on graph neural network (GNN) for concise structure encoding, and design a new learning framework with optical-centric layer compression/reconstruction and rule-aided reinforcement learning (RL) for fast convergence and high performance. Extensive experiments on nine real topologies demonstrate that T3Planner scales to large optical networks with hundreds of sites, saves 46.6% cost, and supports <inline-formula> <tex-math>$3.12\\\\times $ </tex-math></inline-formula> more demand when compared to related existing approaches.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"43 5\",\"pages\":\"1823-1839\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10892228/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10892228/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
T³Planner: Multi-Phase Planning Across Structure-Constrained Optical, IP, and Routing Topologies
Network topology planning is an essential multi-phase process to build and jointly optimize the multi-layer network topologies in wide-area networks (WANs). Most existing practices target single-phase/layer planning, and are incapable of satisfying all rigorous topological structure constraints (e.g., dual-homing rings) defined by network standards and operators, especially in large-scale networks. These significantly limit their usability and performance in production networks. We consider a general topology planning problem with typical structure constraints over three essential phases (greenfield, reconfiguration, and site expansion) and topological layers (optical, IP, and routing topologies). We present, T3Planner, a novel practical solver to this problem in production. Specifically, we develop a structure-driven encoder based on graph neural network (GNN) for concise structure encoding, and design a new learning framework with optical-centric layer compression/reconstruction and rule-aided reinforcement learning (RL) for fast convergence and high performance. Extensive experiments on nine real topologies demonstrate that T3Planner scales to large optical networks with hundreds of sites, saves 46.6% cost, and supports $3.12\times $ more demand when compared to related existing approaches.