{"title":"低延迟、高带宽扩展现实直播的可靠发放","authors":"Giap Le;Vinh Truong Hoang;Sifat Ferdousi;Andrea Marotta;Sugang Xu;Yusuke Hirota;Yoshinari Awaji;Massimo Tornatore;Biswanath Mukherjee","doi":"10.1109/JSAC.2025.3543502","DOIUrl":null,"url":null,"abstract":"The networking industry is offering new services leveraging recent technological advances in connectivity, storage, and computing such as mobile communications and edge computing. In this regard, extended reality, a term encompassing virtual reality, augmented reality, and mixed reality, can provide unprecedented user experience and pioneering service opportunities such as: live concerts, sports, and other events; interactive gaming and entertainment; immersive education, training, and demos. These services require high-bandwidth, low-latency, and reliable connections, and are supported by next-generation ultra-reliable and low-latency communications in the vision of 6G mobile communication systems. In this work, we devise a novel scheme, called backup from different data centers with multicast and adaptive bandwidth provisioning, to admit reliable, low-latency, and high-bandwidth extended reality live streams in next-generation networks. We consider network services where contents are non-cacheable and investigate how backup services can be offered by different data centers with multicast and adaptive bandwidth provisioning. Our proposed service-provisioning scheme provides protection not only against link failures in the physical network but also against computing and storage failures in data centers. We develop scalable algorithms for the service-provisioning scheme and evaluate their performance on various complex network instances in a dynamic environment. Numerical results show that, compared to conventional service-provisioning schemes such as those seeking backup services from the same data center, our proposed service-provisioning scheme efficiently utilizes network resources, ensures higher reliability, and guarantees low latency; hence, it is highly suitable for extended reality live streams.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 5","pages":"1755-1766"},"PeriodicalIF":17.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliable Provisioning of Low-Latency and High-Bandwidth Extended Reality Live Streams\",\"authors\":\"Giap Le;Vinh Truong Hoang;Sifat Ferdousi;Andrea Marotta;Sugang Xu;Yusuke Hirota;Yoshinari Awaji;Massimo Tornatore;Biswanath Mukherjee\",\"doi\":\"10.1109/JSAC.2025.3543502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The networking industry is offering new services leveraging recent technological advances in connectivity, storage, and computing such as mobile communications and edge computing. In this regard, extended reality, a term encompassing virtual reality, augmented reality, and mixed reality, can provide unprecedented user experience and pioneering service opportunities such as: live concerts, sports, and other events; interactive gaming and entertainment; immersive education, training, and demos. These services require high-bandwidth, low-latency, and reliable connections, and are supported by next-generation ultra-reliable and low-latency communications in the vision of 6G mobile communication systems. In this work, we devise a novel scheme, called backup from different data centers with multicast and adaptive bandwidth provisioning, to admit reliable, low-latency, and high-bandwidth extended reality live streams in next-generation networks. We consider network services where contents are non-cacheable and investigate how backup services can be offered by different data centers with multicast and adaptive bandwidth provisioning. Our proposed service-provisioning scheme provides protection not only against link failures in the physical network but also against computing and storage failures in data centers. We develop scalable algorithms for the service-provisioning scheme and evaluate their performance on various complex network instances in a dynamic environment. Numerical results show that, compared to conventional service-provisioning schemes such as those seeking backup services from the same data center, our proposed service-provisioning scheme efficiently utilizes network resources, ensures higher reliability, and guarantees low latency; hence, it is highly suitable for extended reality live streams.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"43 5\",\"pages\":\"1755-1766\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10892315/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10892315/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reliable Provisioning of Low-Latency and High-Bandwidth Extended Reality Live Streams
The networking industry is offering new services leveraging recent technological advances in connectivity, storage, and computing such as mobile communications and edge computing. In this regard, extended reality, a term encompassing virtual reality, augmented reality, and mixed reality, can provide unprecedented user experience and pioneering service opportunities such as: live concerts, sports, and other events; interactive gaming and entertainment; immersive education, training, and demos. These services require high-bandwidth, low-latency, and reliable connections, and are supported by next-generation ultra-reliable and low-latency communications in the vision of 6G mobile communication systems. In this work, we devise a novel scheme, called backup from different data centers with multicast and adaptive bandwidth provisioning, to admit reliable, low-latency, and high-bandwidth extended reality live streams in next-generation networks. We consider network services where contents are non-cacheable and investigate how backup services can be offered by different data centers with multicast and adaptive bandwidth provisioning. Our proposed service-provisioning scheme provides protection not only against link failures in the physical network but also against computing and storage failures in data centers. We develop scalable algorithms for the service-provisioning scheme and evaluate their performance on various complex network instances in a dynamic environment. Numerical results show that, compared to conventional service-provisioning schemes such as those seeking backup services from the same data center, our proposed service-provisioning scheme efficiently utilizes network resources, ensures higher reliability, and guarantees low latency; hence, it is highly suitable for extended reality live streams.