整合状态空间建模、参数估计、深度学习和对接技术在药物再利用中的应用——以COVID-19细胞因子风暴为例

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Abhisek Bakshi, Kaustav Gangopadhyay, Sujit Basak, Rajat K De, Souvik Sengupta, Abhijit Dasgupta
{"title":"整合状态空间建模、参数估计、深度学习和对接技术在药物再利用中的应用——以COVID-19细胞因子风暴为例","authors":"Abhisek Bakshi, Kaustav Gangopadhyay, Sujit Basak, Rajat K De, Souvik Sengupta, Abhijit Dasgupta","doi":"10.1093/jamia/ocaf035","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study addresses the significant challenges posed by emerging SARS-CoV-2 variants, particularly in developing diagnostics and therapeutics. Drug repurposing is investigated by identifying critical regulatory proteins impacted by the virus, providing rapid and effective therapeutic solutions for better disease management.</p><p><strong>Materials and methods: </strong>We employed a comprehensive approach combining mathematical modeling and efficient parameter estimation to study the transient responses of regulatory proteins in both normal and virus-infected cells. Proportional-integral-derivative (PID) controllers were used to pinpoint specific protein targets for therapeutic intervention. Additionally, advanced deep learning models and molecular docking techniques were applied to analyze drug-target and drug-drug interactions, ensuring both efficacy and safety of the proposed treatments. This approach was applied to a case study focused on the cytokine storm in COVID-19, centering on Angiotensin-converting enzyme 2 (ACE2), which plays a key role in SARS-CoV-2 infection.</p><p><strong>Results: </strong>Our findings suggest that activating ACE2 presents a promising therapeutic strategy, whereas inhibiting AT1R seems less effective. Deep learning models, combined with molecular docking, identified Lomefloxacin and Fostamatinib as stable drugs with no significant thermodynamic interactions, suggesting their safe concurrent use in managing COVID-19-induced cytokine storms.</p><p><strong>Discussion: </strong>The results highlight the potential of ACE2 activation in mitigating lung injury and severe inflammation caused by SARS-CoV-2. This integrated approach accelerates the identification of safe and effective treatment options for emerging viral variants.</p><p><strong>Conclusion: </strong>This framework provides an efficient method for identifying critical regulatory proteins and advancing drug repurposing, contributing to the rapid development of therapeutic strategies for COVID-19 and future global pandemics.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating State-Space Modeling, Parameter Estimation, Deep Learning, and Docking Techniques in Drug Repurposing: A Case Study on COVID-19 Cytokine Storm.\",\"authors\":\"Abhisek Bakshi, Kaustav Gangopadhyay, Sujit Basak, Rajat K De, Souvik Sengupta, Abhijit Dasgupta\",\"doi\":\"10.1093/jamia/ocaf035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study addresses the significant challenges posed by emerging SARS-CoV-2 variants, particularly in developing diagnostics and therapeutics. Drug repurposing is investigated by identifying critical regulatory proteins impacted by the virus, providing rapid and effective therapeutic solutions for better disease management.</p><p><strong>Materials and methods: </strong>We employed a comprehensive approach combining mathematical modeling and efficient parameter estimation to study the transient responses of regulatory proteins in both normal and virus-infected cells. Proportional-integral-derivative (PID) controllers were used to pinpoint specific protein targets for therapeutic intervention. Additionally, advanced deep learning models and molecular docking techniques were applied to analyze drug-target and drug-drug interactions, ensuring both efficacy and safety of the proposed treatments. This approach was applied to a case study focused on the cytokine storm in COVID-19, centering on Angiotensin-converting enzyme 2 (ACE2), which plays a key role in SARS-CoV-2 infection.</p><p><strong>Results: </strong>Our findings suggest that activating ACE2 presents a promising therapeutic strategy, whereas inhibiting AT1R seems less effective. Deep learning models, combined with molecular docking, identified Lomefloxacin and Fostamatinib as stable drugs with no significant thermodynamic interactions, suggesting their safe concurrent use in managing COVID-19-induced cytokine storms.</p><p><strong>Discussion: </strong>The results highlight the potential of ACE2 activation in mitigating lung injury and severe inflammation caused by SARS-CoV-2. This integrated approach accelerates the identification of safe and effective treatment options for emerging viral variants.</p><p><strong>Conclusion: </strong>This framework provides an efficient method for identifying critical regulatory proteins and advancing drug repurposing, contributing to the rapid development of therapeutic strategies for COVID-19 and future global pandemics.</p>\",\"PeriodicalId\":50016,\"journal\":{\"name\":\"Journal of the American Medical Informatics Association\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Medical Informatics Association\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1093/jamia/ocaf035\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf035","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在解决新出现的SARS-CoV-2变体带来的重大挑战,特别是在开发诊断和治疗方法方面。通过鉴定受病毒影响的关键调节蛋白来研究药物再利用,为更好的疾病管理提供快速有效的治疗解决方案。材料和方法:采用数学建模和高效参数估计相结合的综合方法,研究了调节蛋白在正常细胞和病毒感染细胞中的瞬时反应。比例-积分-导数(PID)控制器用于精确定位治疗干预的特定蛋白质靶点。此外,采用先进的深度学习模型和分子对接技术分析药物-靶点和药物-药物相互作用,确保所提出治疗的有效性和安全性。该方法应用于一项以COVID-19细胞因子风暴为中心的案例研究,该研究以血管紧张素转换酶2 (ACE2)为中心,该酶在SARS-CoV-2感染中起关键作用。结果:我们的研究结果表明,激活ACE2是一种很有希望的治疗策略,而抑制AT1R似乎不太有效。深度学习模型结合分子对接,确定了洛美沙星和福斯塔马替尼是稳定的药物,没有明显的热力学相互作用,表明它们可以安全地同时用于控制covid -19诱导的细胞因子风暴。讨论:这些结果强调了ACE2激活在减轻SARS-CoV-2引起的肺损伤和严重炎症方面的潜力。这种综合方法加速了对新出现的病毒变体的安全有效治疗选择的确定。结论:该框架为鉴定关键调控蛋白和推进药物再利用提供了有效方法,有助于快速制定COVID-19和未来全球大流行的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating State-Space Modeling, Parameter Estimation, Deep Learning, and Docking Techniques in Drug Repurposing: A Case Study on COVID-19 Cytokine Storm.

Objective: This study addresses the significant challenges posed by emerging SARS-CoV-2 variants, particularly in developing diagnostics and therapeutics. Drug repurposing is investigated by identifying critical regulatory proteins impacted by the virus, providing rapid and effective therapeutic solutions for better disease management.

Materials and methods: We employed a comprehensive approach combining mathematical modeling and efficient parameter estimation to study the transient responses of regulatory proteins in both normal and virus-infected cells. Proportional-integral-derivative (PID) controllers were used to pinpoint specific protein targets for therapeutic intervention. Additionally, advanced deep learning models and molecular docking techniques were applied to analyze drug-target and drug-drug interactions, ensuring both efficacy and safety of the proposed treatments. This approach was applied to a case study focused on the cytokine storm in COVID-19, centering on Angiotensin-converting enzyme 2 (ACE2), which plays a key role in SARS-CoV-2 infection.

Results: Our findings suggest that activating ACE2 presents a promising therapeutic strategy, whereas inhibiting AT1R seems less effective. Deep learning models, combined with molecular docking, identified Lomefloxacin and Fostamatinib as stable drugs with no significant thermodynamic interactions, suggesting their safe concurrent use in managing COVID-19-induced cytokine storms.

Discussion: The results highlight the potential of ACE2 activation in mitigating lung injury and severe inflammation caused by SARS-CoV-2. This integrated approach accelerates the identification of safe and effective treatment options for emerging viral variants.

Conclusion: This framework provides an efficient method for identifying critical regulatory proteins and advancing drug repurposing, contributing to the rapid development of therapeutic strategies for COVID-19 and future global pandemics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信