利用LSD1的非酶功能开发新疗法。

IF 13.9 1区 医学 Q1 PHARMACOLOGY & PHARMACY
Trends in pharmacological sciences Pub Date : 2025-03-01 Epub Date: 2025-02-17 DOI:10.1016/j.tips.2025.01.006
Yihui Song, Bin Yu
{"title":"利用LSD1的非酶功能开发新疗法。","authors":"Yihui Song, Bin Yu","doi":"10.1016/j.tips.2025.01.006","DOIUrl":null,"url":null,"abstract":"<p><p>Lysine-specific demethylase 1 (LSD1) is a key enzyme that removes the methylation marks from lysines in the histone tails of nucleosomes. Emerging evidence suggests that LSD1 exhibits both enzyme-dependent and independent functions across various diseases. However, most LSD1-targeted therapies in clinical trials focus on its classic demethylase activity. Only one allosteric inhibitor (SP-2577) and two nonproteolysis-targeting chimera (PROTAC) LSD1 degraders (BEA-17 and UM171), which target its enzyme-independent functions, have entered clinical assessment. Given the limited exploration of therapeutic strategies targeting the non-enzymatic functions of LSD1, in this opinion, we summarize current insights into its biological roles and structural characteristics. We also highlight potential therapeutic interventions targeting the non-enzymatic functions of LSD1, including allosteric inhibitors, protein-protein interaction (PPI) inhibitors, and small-molecule degraders, and discuss challenges and future directions in drug discovery targeting these functions.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":"204-219"},"PeriodicalIF":13.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging non-enzymatic functions of LSD1 for novel therapeutics.\",\"authors\":\"Yihui Song, Bin Yu\",\"doi\":\"10.1016/j.tips.2025.01.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lysine-specific demethylase 1 (LSD1) is a key enzyme that removes the methylation marks from lysines in the histone tails of nucleosomes. Emerging evidence suggests that LSD1 exhibits both enzyme-dependent and independent functions across various diseases. However, most LSD1-targeted therapies in clinical trials focus on its classic demethylase activity. Only one allosteric inhibitor (SP-2577) and two nonproteolysis-targeting chimera (PROTAC) LSD1 degraders (BEA-17 and UM171), which target its enzyme-independent functions, have entered clinical assessment. Given the limited exploration of therapeutic strategies targeting the non-enzymatic functions of LSD1, in this opinion, we summarize current insights into its biological roles and structural characteristics. We also highlight potential therapeutic interventions targeting the non-enzymatic functions of LSD1, including allosteric inhibitors, protein-protein interaction (PPI) inhibitors, and small-molecule degraders, and discuss challenges and future directions in drug discovery targeting these functions.</p>\",\"PeriodicalId\":23250,\"journal\":{\"name\":\"Trends in pharmacological sciences\",\"volume\":\" \",\"pages\":\"204-219\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in pharmacological sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tips.2025.01.006\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tips.2025.01.006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

赖氨酸特异性去甲基化酶1 (LSD1)是去除核小体组蛋白尾部赖氨酸甲基化标记的关键酶。越来越多的证据表明,LSD1在各种疾病中都表现出酶依赖和独立的功能。然而,临床试验中大多数lsd1靶向治疗都集中在其经典的去甲基化酶活性上。只有一种变构抑制剂(SP-2577)和两种非蛋白水解嵌合体(PROTAC) LSD1降糖剂(BEA-17和UM171)靶向其不依赖于酶的功能,已进入临床评估。鉴于针对LSD1非酶功能的治疗策略的探索有限,在此观点下,我们总结了目前对其生物学作用和结构特征的见解。我们还强调了针对LSD1非酶功能的潜在治疗干预措施,包括变构抑制剂、蛋白-蛋白相互作用(PPI)抑制剂和小分子降解剂,并讨论了针对这些功能的药物发现的挑战和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging non-enzymatic functions of LSD1 for novel therapeutics.

Lysine-specific demethylase 1 (LSD1) is a key enzyme that removes the methylation marks from lysines in the histone tails of nucleosomes. Emerging evidence suggests that LSD1 exhibits both enzyme-dependent and independent functions across various diseases. However, most LSD1-targeted therapies in clinical trials focus on its classic demethylase activity. Only one allosteric inhibitor (SP-2577) and two nonproteolysis-targeting chimera (PROTAC) LSD1 degraders (BEA-17 and UM171), which target its enzyme-independent functions, have entered clinical assessment. Given the limited exploration of therapeutic strategies targeting the non-enzymatic functions of LSD1, in this opinion, we summarize current insights into its biological roles and structural characteristics. We also highlight potential therapeutic interventions targeting the non-enzymatic functions of LSD1, including allosteric inhibitors, protein-protein interaction (PPI) inhibitors, and small-molecule degraders, and discuss challenges and future directions in drug discovery targeting these functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.90
自引率
0.70%
发文量
132
审稿时长
6-12 weeks
期刊介绍: Trends in Pharmacological Sciences (TIPS) is a monthly peer-reviewed reviews journal that focuses on a wide range of topics in pharmacology, pharmacy, pharmaceutics, and toxicology. Launched in 1979, TIPS publishes concise articles discussing the latest advancements in pharmacology and therapeutics research. The journal encourages submissions that align with its core themes while also being open to articles on the biopharma regulatory landscape, science policy and regulation, and bioethics. Each issue of TIPS provides a platform for experts to share their insights and perspectives on the most exciting developments in the field. Through rigorous peer review, the journal ensures the quality and reliability of published articles. Authors are invited to contribute articles that contribute to the understanding of pharmacology and its applications in various domains. Whether it's exploring innovative drug therapies or discussing the ethical considerations of pharmaceutical research, TIPS provides a valuable resource for researchers, practitioners, and policymakers in the pharmacological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信