SCH58261可有效防止睡眠剥夺20小时后纹状体单胞核兴奋性的降低。

IF 3 4区 医学 Q2 NEUROSCIENCES
Jin Peng, Xinyu Huang, Peijie Liu, Yushi Hu, Liang Kang
{"title":"SCH58261可有效防止睡眠剥夺20小时后纹状体单胞核兴奋性的降低。","authors":"Jin Peng, Xinyu Huang, Peijie Liu, Yushi Hu, Liang Kang","doi":"10.1007/s11302-025-10072-z","DOIUrl":null,"url":null,"abstract":"<p><p>Adenosine, a sleep-associated neuromodulator, is crucial in various physiological and pathological processes. Previous studies have demonstrated that sleep deprivation (SD) alters striatal neuronal activity. In this study, we used in vitro electrophysiological recordings to investigate the effects of 20 h of SD on the neuronal excitability of mouse dorsal striatal medium spiny neurons (MSNs). Our findings revealed that SD resulted in altered action potential (AP) discharge properties and reduced neuronal excitability compared to the control group. Importantly, these changes were partially offset by the prophylactic injection of the A2A receptor (A2AR) antagonist SCH58261. Additionally, 20 h of SD caused a decrease in the amplitude and an increase in the interval of spontaneous excitatory postsynaptic currents (sEPSCs) compared to control. However, the prophylactic injection of the A2AR antagonism shortened the sEPSC interval, while the A1 receptor (A1R) antagonist DPCPX not only shortened the interval but also further reduced the amplitude of sEPSCs. Thus, it can be concluded that SCH58261 effectively prevents the reduction in excitability of striatal MSNs in mice following 20 h of sleep deprivation, whereas DPCPX does not.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCH58261 effectively prevents the reduction in excitability of striatal MSNs in mice following 20 h of sleep deprivation.\",\"authors\":\"Jin Peng, Xinyu Huang, Peijie Liu, Yushi Hu, Liang Kang\",\"doi\":\"10.1007/s11302-025-10072-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adenosine, a sleep-associated neuromodulator, is crucial in various physiological and pathological processes. Previous studies have demonstrated that sleep deprivation (SD) alters striatal neuronal activity. In this study, we used in vitro electrophysiological recordings to investigate the effects of 20 h of SD on the neuronal excitability of mouse dorsal striatal medium spiny neurons (MSNs). Our findings revealed that SD resulted in altered action potential (AP) discharge properties and reduced neuronal excitability compared to the control group. Importantly, these changes were partially offset by the prophylactic injection of the A2A receptor (A2AR) antagonist SCH58261. Additionally, 20 h of SD caused a decrease in the amplitude and an increase in the interval of spontaneous excitatory postsynaptic currents (sEPSCs) compared to control. However, the prophylactic injection of the A2AR antagonism shortened the sEPSC interval, while the A1 receptor (A1R) antagonist DPCPX not only shortened the interval but also further reduced the amplitude of sEPSCs. Thus, it can be concluded that SCH58261 effectively prevents the reduction in excitability of striatal MSNs in mice following 20 h of sleep deprivation, whereas DPCPX does not.</p>\",\"PeriodicalId\":20952,\"journal\":{\"name\":\"Purinergic Signalling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Purinergic Signalling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11302-025-10072-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10072-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

腺苷是一种与睡眠相关的神经调节剂,在各种生理和病理过程中起着至关重要的作用。先前的研究表明,睡眠剥夺(SD)会改变纹状体神经元的活动。本研究采用体外电生理记录的方法研究SD对小鼠背纹状体中棘神经元(MSNs)神经元兴奋性的影响。我们的研究结果显示,与对照组相比,SD导致动作电位(AP)放电特性改变和神经元兴奋性降低。重要的是,这些变化被预防性注射A2A受体(A2AR)拮抗剂SCH58261部分抵消。此外,与对照组相比,20 h SD可引起自发性兴奋性突触后电流(sEPSCs)的振幅降低和间隔增加。然而,预防性注射A2AR拮抗剂可缩短sEPSC间期,而A1受体(A1R)拮抗剂DPCPX不仅可缩短间隔,还可进一步降低sEPSC的振幅。由此可见,SCH58261能有效防止睡眠剥夺20 h后纹状体单胞核兴奋性的降低,而DPCPX则不能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SCH58261 effectively prevents the reduction in excitability of striatal MSNs in mice following 20 h of sleep deprivation.

Adenosine, a sleep-associated neuromodulator, is crucial in various physiological and pathological processes. Previous studies have demonstrated that sleep deprivation (SD) alters striatal neuronal activity. In this study, we used in vitro electrophysiological recordings to investigate the effects of 20 h of SD on the neuronal excitability of mouse dorsal striatal medium spiny neurons (MSNs). Our findings revealed that SD resulted in altered action potential (AP) discharge properties and reduced neuronal excitability compared to the control group. Importantly, these changes were partially offset by the prophylactic injection of the A2A receptor (A2AR) antagonist SCH58261. Additionally, 20 h of SD caused a decrease in the amplitude and an increase in the interval of spontaneous excitatory postsynaptic currents (sEPSCs) compared to control. However, the prophylactic injection of the A2AR antagonism shortened the sEPSC interval, while the A1 receptor (A1R) antagonist DPCPX not only shortened the interval but also further reduced the amplitude of sEPSCs. Thus, it can be concluded that SCH58261 effectively prevents the reduction in excitability of striatal MSNs in mice following 20 h of sleep deprivation, whereas DPCPX does not.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Purinergic Signalling
Purinergic Signalling 医学-神经科学
CiteScore
6.60
自引率
17.10%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信