David Engel, R Stefan Greulich, Alberto Parola, Kaleb Vinehout, Justus Student, Josefine Waldthaler, Lars Timmermann, Frank Bremmer
{"title":"摇摆频率可预测帕金森病的姿势不稳定性:一种新型卷积神经网络方法。","authors":"David Engel, R Stefan Greulich, Alberto Parola, Kaleb Vinehout, Justus Student, Josefine Waldthaler, Lars Timmermann, Frank Bremmer","doi":"10.1186/s12984-025-01570-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Postural instability greatly reduces quality of life in people with Parkinson's disease (PD). Early and objective detection of postural impairments is crucial to facilitate interventions. Our aim was to use a convolutional neural network (CNN) to differentiate people with early to mid-stage PD from healthy age-matched individuals based on spectrogram images obtained from their body sway. We hypothesized the time-frequency content of body sway to be predictive of PD, even when impairments are not yet clinically apparent.</p><p><strong>Methods: </strong>18 people with idiopathic PD and 15 healthy controls (HC) participated in the study. We tracked participants' center of pressure (COP) using a Wii Balance Board and their full-body motion using a Microsoft Kinect, out of which we calculated the trajectory of their center of mass (COM). We used 30 s-snippets of motion data from which we acquired wavelet-based time-frequency spectrograms that were fed into a custom-built CNN as labeled images. We used binary classification to have the network differentiate between individuals with PD and controls (n = 15, respectively).</p><p><strong>Results: </strong>Classification performance was best when the medio-lateral motion of the COM was considered. Here, our network reached a predictive accuracy, sensitivity, specificity, precision and F1-score of 100%, respectively, with a receiver operating characteristic area under the curve of 1.0. Moreover, an explainable AI approach revealed high frequencies in the postural sway data to be most distinct between both groups.</p><p><strong>Conclusion: </strong>Heeding our small and heterogeneous sample, our findings suggest a CNN classifier based on cost-effective and conveniently obtainable posturographic data to be a promising approach to detect postural impairments in early to mid-stage PD and to gain novel insight into the subtle characteristics of impairments at this stage of the disease.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"29"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sway frequencies may predict postural instability in Parkinson's disease: a novel convolutional neural network approach.\",\"authors\":\"David Engel, R Stefan Greulich, Alberto Parola, Kaleb Vinehout, Justus Student, Josefine Waldthaler, Lars Timmermann, Frank Bremmer\",\"doi\":\"10.1186/s12984-025-01570-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Postural instability greatly reduces quality of life in people with Parkinson's disease (PD). Early and objective detection of postural impairments is crucial to facilitate interventions. Our aim was to use a convolutional neural network (CNN) to differentiate people with early to mid-stage PD from healthy age-matched individuals based on spectrogram images obtained from their body sway. We hypothesized the time-frequency content of body sway to be predictive of PD, even when impairments are not yet clinically apparent.</p><p><strong>Methods: </strong>18 people with idiopathic PD and 15 healthy controls (HC) participated in the study. We tracked participants' center of pressure (COP) using a Wii Balance Board and their full-body motion using a Microsoft Kinect, out of which we calculated the trajectory of their center of mass (COM). We used 30 s-snippets of motion data from which we acquired wavelet-based time-frequency spectrograms that were fed into a custom-built CNN as labeled images. We used binary classification to have the network differentiate between individuals with PD and controls (n = 15, respectively).</p><p><strong>Results: </strong>Classification performance was best when the medio-lateral motion of the COM was considered. Here, our network reached a predictive accuracy, sensitivity, specificity, precision and F1-score of 100%, respectively, with a receiver operating characteristic area under the curve of 1.0. Moreover, an explainable AI approach revealed high frequencies in the postural sway data to be most distinct between both groups.</p><p><strong>Conclusion: </strong>Heeding our small and heterogeneous sample, our findings suggest a CNN classifier based on cost-effective and conveniently obtainable posturographic data to be a promising approach to detect postural impairments in early to mid-stage PD and to gain novel insight into the subtle characteristics of impairments at this stage of the disease.</p>\",\"PeriodicalId\":16384,\"journal\":{\"name\":\"Journal of NeuroEngineering and Rehabilitation\",\"volume\":\"22 1\",\"pages\":\"29\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of NeuroEngineering and Rehabilitation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12984-025-01570-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-025-01570-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Sway frequencies may predict postural instability in Parkinson's disease: a novel convolutional neural network approach.
Background: Postural instability greatly reduces quality of life in people with Parkinson's disease (PD). Early and objective detection of postural impairments is crucial to facilitate interventions. Our aim was to use a convolutional neural network (CNN) to differentiate people with early to mid-stage PD from healthy age-matched individuals based on spectrogram images obtained from their body sway. We hypothesized the time-frequency content of body sway to be predictive of PD, even when impairments are not yet clinically apparent.
Methods: 18 people with idiopathic PD and 15 healthy controls (HC) participated in the study. We tracked participants' center of pressure (COP) using a Wii Balance Board and their full-body motion using a Microsoft Kinect, out of which we calculated the trajectory of their center of mass (COM). We used 30 s-snippets of motion data from which we acquired wavelet-based time-frequency spectrograms that were fed into a custom-built CNN as labeled images. We used binary classification to have the network differentiate between individuals with PD and controls (n = 15, respectively).
Results: Classification performance was best when the medio-lateral motion of the COM was considered. Here, our network reached a predictive accuracy, sensitivity, specificity, precision and F1-score of 100%, respectively, with a receiver operating characteristic area under the curve of 1.0. Moreover, an explainable AI approach revealed high frequencies in the postural sway data to be most distinct between both groups.
Conclusion: Heeding our small and heterogeneous sample, our findings suggest a CNN classifier based on cost-effective and conveniently obtainable posturographic data to be a promising approach to detect postural impairments in early to mid-stage PD and to gain novel insight into the subtle characteristics of impairments at this stage of the disease.
期刊介绍:
Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.