摇摆频率可预测帕金森病的姿势不稳定性:一种新型卷积神经网络方法。

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
David Engel, R Stefan Greulich, Alberto Parola, Kaleb Vinehout, Justus Student, Josefine Waldthaler, Lars Timmermann, Frank Bremmer
{"title":"摇摆频率可预测帕金森病的姿势不稳定性:一种新型卷积神经网络方法。","authors":"David Engel, R Stefan Greulich, Alberto Parola, Kaleb Vinehout, Justus Student, Josefine Waldthaler, Lars Timmermann, Frank Bremmer","doi":"10.1186/s12984-025-01570-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Postural instability greatly reduces quality of life in people with Parkinson's disease (PD). Early and objective detection of postural impairments is crucial to facilitate interventions. Our aim was to use a convolutional neural network (CNN) to differentiate people with early to mid-stage PD from healthy age-matched individuals based on spectrogram images obtained from their body sway. We hypothesized the time-frequency content of body sway to be predictive of PD, even when impairments are not yet clinically apparent.</p><p><strong>Methods: </strong>18 people with idiopathic PD and 15 healthy controls (HC) participated in the study. We tracked participants' center of pressure (COP) using a Wii Balance Board and their full-body motion using a Microsoft Kinect, out of which we calculated the trajectory of their center of mass (COM). We used 30 s-snippets of motion data from which we acquired wavelet-based time-frequency spectrograms that were fed into a custom-built CNN as labeled images. We used binary classification to have the network differentiate between individuals with PD and controls (n = 15, respectively).</p><p><strong>Results: </strong>Classification performance was best when the medio-lateral motion of the COM was considered. Here, our network reached a predictive accuracy, sensitivity, specificity, precision and F1-score of 100%, respectively, with a receiver operating characteristic area under the curve of 1.0. Moreover, an explainable AI approach revealed high frequencies in the postural sway data to be most distinct between both groups.</p><p><strong>Conclusion: </strong>Heeding our small and heterogeneous sample, our findings suggest a CNN classifier based on cost-effective and conveniently obtainable posturographic data to be a promising approach to detect postural impairments in early to mid-stage PD and to gain novel insight into the subtle characteristics of impairments at this stage of the disease.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"29"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sway frequencies may predict postural instability in Parkinson's disease: a novel convolutional neural network approach.\",\"authors\":\"David Engel, R Stefan Greulich, Alberto Parola, Kaleb Vinehout, Justus Student, Josefine Waldthaler, Lars Timmermann, Frank Bremmer\",\"doi\":\"10.1186/s12984-025-01570-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Postural instability greatly reduces quality of life in people with Parkinson's disease (PD). Early and objective detection of postural impairments is crucial to facilitate interventions. Our aim was to use a convolutional neural network (CNN) to differentiate people with early to mid-stage PD from healthy age-matched individuals based on spectrogram images obtained from their body sway. We hypothesized the time-frequency content of body sway to be predictive of PD, even when impairments are not yet clinically apparent.</p><p><strong>Methods: </strong>18 people with idiopathic PD and 15 healthy controls (HC) participated in the study. We tracked participants' center of pressure (COP) using a Wii Balance Board and their full-body motion using a Microsoft Kinect, out of which we calculated the trajectory of their center of mass (COM). We used 30 s-snippets of motion data from which we acquired wavelet-based time-frequency spectrograms that were fed into a custom-built CNN as labeled images. We used binary classification to have the network differentiate between individuals with PD and controls (n = 15, respectively).</p><p><strong>Results: </strong>Classification performance was best when the medio-lateral motion of the COM was considered. Here, our network reached a predictive accuracy, sensitivity, specificity, precision and F1-score of 100%, respectively, with a receiver operating characteristic area under the curve of 1.0. Moreover, an explainable AI approach revealed high frequencies in the postural sway data to be most distinct between both groups.</p><p><strong>Conclusion: </strong>Heeding our small and heterogeneous sample, our findings suggest a CNN classifier based on cost-effective and conveniently obtainable posturographic data to be a promising approach to detect postural impairments in early to mid-stage PD and to gain novel insight into the subtle characteristics of impairments at this stage of the disease.</p>\",\"PeriodicalId\":16384,\"journal\":{\"name\":\"Journal of NeuroEngineering and Rehabilitation\",\"volume\":\"22 1\",\"pages\":\"29\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of NeuroEngineering and Rehabilitation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12984-025-01570-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-025-01570-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sway frequencies may predict postural instability in Parkinson's disease: a novel convolutional neural network approach.

Background: Postural instability greatly reduces quality of life in people with Parkinson's disease (PD). Early and objective detection of postural impairments is crucial to facilitate interventions. Our aim was to use a convolutional neural network (CNN) to differentiate people with early to mid-stage PD from healthy age-matched individuals based on spectrogram images obtained from their body sway. We hypothesized the time-frequency content of body sway to be predictive of PD, even when impairments are not yet clinically apparent.

Methods: 18 people with idiopathic PD and 15 healthy controls (HC) participated in the study. We tracked participants' center of pressure (COP) using a Wii Balance Board and their full-body motion using a Microsoft Kinect, out of which we calculated the trajectory of their center of mass (COM). We used 30 s-snippets of motion data from which we acquired wavelet-based time-frequency spectrograms that were fed into a custom-built CNN as labeled images. We used binary classification to have the network differentiate between individuals with PD and controls (n = 15, respectively).

Results: Classification performance was best when the medio-lateral motion of the COM was considered. Here, our network reached a predictive accuracy, sensitivity, specificity, precision and F1-score of 100%, respectively, with a receiver operating characteristic area under the curve of 1.0. Moreover, an explainable AI approach revealed high frequencies in the postural sway data to be most distinct between both groups.

Conclusion: Heeding our small and heterogeneous sample, our findings suggest a CNN classifier based on cost-effective and conveniently obtainable posturographic data to be a promising approach to detect postural impairments in early to mid-stage PD and to gain novel insight into the subtle characteristics of impairments at this stage of the disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信