{"title":"MONet:基于多组学数据和网络模型集成分析的癌症驱动基因识别算法。","authors":"Yingzan Ren, Tiantian Zhang, Jian Liu, Fubin Ma, Jiaxin Chen, Ponian Li, Guodong Xiao, Chuanqi Sun, Yusen Zhang","doi":"10.3389/ebm.2025.10399","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer progression is orchestrated by the accrual of mutations in driver genes, which endow malignant cells with a selective proliferative advantage. Identifying cancer driver genes is crucial for elucidating the molecular mechanisms of cancer, advancing targeted therapies, and uncovering novel biomarkers. Based on integrated analysis of Multi-Omics data and Network models, we present MONet, a novel cancer driver gene identification algorithm. Our method utilizes two graph neural network algorithms on protein-protein interaction (PPI) networks to extract feature vector representations for each gene. These feature vectors are subsequently concatenated and fed into a multi-layer perceptron model (MLP) to perform semi-supervised identification of cancer driver genes. For each mutated gene, MONet assigns the probability of being potential driver, with genes identified in at least two PPI networks selected as candidate driver genes. When applied to pan-cancer datasets, MONet demonstrated robustness across various PPI networks, outperforming baseline models in terms of both the area under the receiver operating characteristic curve and the area under the precision-recall curve. Notably, MONet identified 37 novel driver genes that were missed by other methods, including 29 genes such as APOBEC2, GDNF, and PRELP, which are corroborated by existing literature, underscoring their critical roles in cancer development and progression. Through the MONet framework, we successfully identified known and novel candidate cancer driver genes, providing biologically meaningful insights into cancer mechanisms.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":"250 ","pages":"10399"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834253/pdf/","citationCount":"0","resultStr":"{\"title\":\"MONet: cancer driver gene identification algorithm based on integrated analysis of multi-omics data and network models.\",\"authors\":\"Yingzan Ren, Tiantian Zhang, Jian Liu, Fubin Ma, Jiaxin Chen, Ponian Li, Guodong Xiao, Chuanqi Sun, Yusen Zhang\",\"doi\":\"10.3389/ebm.2025.10399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer progression is orchestrated by the accrual of mutations in driver genes, which endow malignant cells with a selective proliferative advantage. Identifying cancer driver genes is crucial for elucidating the molecular mechanisms of cancer, advancing targeted therapies, and uncovering novel biomarkers. Based on integrated analysis of Multi-Omics data and Network models, we present MONet, a novel cancer driver gene identification algorithm. Our method utilizes two graph neural network algorithms on protein-protein interaction (PPI) networks to extract feature vector representations for each gene. These feature vectors are subsequently concatenated and fed into a multi-layer perceptron model (MLP) to perform semi-supervised identification of cancer driver genes. For each mutated gene, MONet assigns the probability of being potential driver, with genes identified in at least two PPI networks selected as candidate driver genes. When applied to pan-cancer datasets, MONet demonstrated robustness across various PPI networks, outperforming baseline models in terms of both the area under the receiver operating characteristic curve and the area under the precision-recall curve. Notably, MONet identified 37 novel driver genes that were missed by other methods, including 29 genes such as APOBEC2, GDNF, and PRELP, which are corroborated by existing literature, underscoring their critical roles in cancer development and progression. Through the MONet framework, we successfully identified known and novel candidate cancer driver genes, providing biologically meaningful insights into cancer mechanisms.</p>\",\"PeriodicalId\":12163,\"journal\":{\"name\":\"Experimental Biology and Medicine\",\"volume\":\"250 \",\"pages\":\"10399\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834253/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/ebm.2025.10399\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/ebm.2025.10399","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
MONet: cancer driver gene identification algorithm based on integrated analysis of multi-omics data and network models.
Cancer progression is orchestrated by the accrual of mutations in driver genes, which endow malignant cells with a selective proliferative advantage. Identifying cancer driver genes is crucial for elucidating the molecular mechanisms of cancer, advancing targeted therapies, and uncovering novel biomarkers. Based on integrated analysis of Multi-Omics data and Network models, we present MONet, a novel cancer driver gene identification algorithm. Our method utilizes two graph neural network algorithms on protein-protein interaction (PPI) networks to extract feature vector representations for each gene. These feature vectors are subsequently concatenated and fed into a multi-layer perceptron model (MLP) to perform semi-supervised identification of cancer driver genes. For each mutated gene, MONet assigns the probability of being potential driver, with genes identified in at least two PPI networks selected as candidate driver genes. When applied to pan-cancer datasets, MONet demonstrated robustness across various PPI networks, outperforming baseline models in terms of both the area under the receiver operating characteristic curve and the area under the precision-recall curve. Notably, MONet identified 37 novel driver genes that were missed by other methods, including 29 genes such as APOBEC2, GDNF, and PRELP, which are corroborated by existing literature, underscoring their critical roles in cancer development and progression. Through the MONet framework, we successfully identified known and novel candidate cancer driver genes, providing biologically meaningful insights into cancer mechanisms.
期刊介绍:
Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population.
Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.