Jaclyn M. Goodrich, Melissa A. Furlong, Derek J. Urwin, Jamie Gabriel, Jeff Hughes, Alesia M. Jung, Miriam M. Calkins, Kathleen N. DuBose, Alberto J. Caban-Martinez, Natasha Schaefer Solle, Shawn C. Beitel, Jefferey L. Burgess
{"title":"与荒地-城市界面(WUI)灭火相关的表观遗传修饰。","authors":"Jaclyn M. Goodrich, Melissa A. Furlong, Derek J. Urwin, Jamie Gabriel, Jeff Hughes, Alesia M. Jung, Miriam M. Calkins, Kathleen N. DuBose, Alberto J. Caban-Martinez, Natasha Schaefer Solle, Shawn C. Beitel, Jefferey L. Burgess","doi":"10.1002/em.70002","DOIUrl":null,"url":null,"abstract":"<p>Wildland–urban interface (WUI) firefighting involves exposure to burning vegetation, structures, and other human-made hazards, often without respiratory protection. Response activities can last for long periods of time, spanning multiple days or weeks. Epigenetic modifications, including microRNA (miRNA) expression and DNA methylation, are responsive to toxicant exposures and are part of the development of cancers and other diseases. Epigenetic modifications have not been studied in relation to WUI fires. Firefighters (<i>n</i> = 99) from southern California, including 79 firefighters who responded to at least one WUI fire, provided blood samples at baseline and approximately 10 months later. We quantified the relative abundance of 800 miRNAs in blood samples using the nCounter Human v3 miRNA expression panel and blood leukocyte DNA methylation throughout the genome via the Infinium EPIC array. We used linear mixed models to compare the expression of each miRNA across time and DNA methylation at each locus, adjusting for potential confounders. In the miRNA analysis among all firefighters, 65 miRNAs were significantly different at follow-up compared to baseline at a false discovery rate of 5%. Results were similar when restricted to firefighters with a recorded WUI fire exposure during the interim period, although only 50 were significant. Expression of miRNA hsa-miR-518c-3p, a tumor suppressor, was significantly associated with WUI fire response (fold change 0.77, 95% CI = [0.69, 0.87]). In the DNA methylation analysis, no statistically significant changes over time were identified. In summary, WUI fire exposures over a wildfire season altered miRNA expression but did not substantially impact DNA methylation.</p>","PeriodicalId":11791,"journal":{"name":"Environmental and Molecular Mutagenesis","volume":"66 1-2","pages":"22-33"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/em.70002","citationCount":"0","resultStr":"{\"title\":\"Epigenetic Modifications Associated With Wildland–Urban Interface (WUI) Firefighting\",\"authors\":\"Jaclyn M. Goodrich, Melissa A. Furlong, Derek J. Urwin, Jamie Gabriel, Jeff Hughes, Alesia M. Jung, Miriam M. Calkins, Kathleen N. DuBose, Alberto J. Caban-Martinez, Natasha Schaefer Solle, Shawn C. Beitel, Jefferey L. Burgess\",\"doi\":\"10.1002/em.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wildland–urban interface (WUI) firefighting involves exposure to burning vegetation, structures, and other human-made hazards, often without respiratory protection. Response activities can last for long periods of time, spanning multiple days or weeks. Epigenetic modifications, including microRNA (miRNA) expression and DNA methylation, are responsive to toxicant exposures and are part of the development of cancers and other diseases. Epigenetic modifications have not been studied in relation to WUI fires. Firefighters (<i>n</i> = 99) from southern California, including 79 firefighters who responded to at least one WUI fire, provided blood samples at baseline and approximately 10 months later. We quantified the relative abundance of 800 miRNAs in blood samples using the nCounter Human v3 miRNA expression panel and blood leukocyte DNA methylation throughout the genome via the Infinium EPIC array. We used linear mixed models to compare the expression of each miRNA across time and DNA methylation at each locus, adjusting for potential confounders. In the miRNA analysis among all firefighters, 65 miRNAs were significantly different at follow-up compared to baseline at a false discovery rate of 5%. Results were similar when restricted to firefighters with a recorded WUI fire exposure during the interim period, although only 50 were significant. Expression of miRNA hsa-miR-518c-3p, a tumor suppressor, was significantly associated with WUI fire response (fold change 0.77, 95% CI = [0.69, 0.87]). In the DNA methylation analysis, no statistically significant changes over time were identified. In summary, WUI fire exposures over a wildfire season altered miRNA expression but did not substantially impact DNA methylation.</p>\",\"PeriodicalId\":11791,\"journal\":{\"name\":\"Environmental and Molecular Mutagenesis\",\"volume\":\"66 1-2\",\"pages\":\"22-33\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/em.70002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Molecular Mutagenesis\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/em.70002\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Molecular Mutagenesis","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/em.70002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
荒地-城市界面(WUI)消防涉及暴露于燃烧的植被、建筑物和其他人为危害,通常没有呼吸保护。响应活动可能持续很长一段时间,跨越数天或数周。表观遗传修饰,包括microRNA (miRNA)表达和DNA甲基化,对有毒物质暴露有反应,是癌症和其他疾病发展的一部分。表观遗传修饰尚未被研究与WUI火灾有关。来自南加州的消防员(n = 99),包括79名对至少一次WUI火灾做出反应的消防员,在基线和大约10个月后提供了血液样本。我们使用nCounter Human v3 miRNA表达面板量化了血液样本中800种miRNA的相对丰度,并通过Infinium EPIC阵列量化了整个基因组中的血液白细胞DNA甲基化。我们使用线性混合模型来比较每个miRNA随时间的表达和每个位点的DNA甲基化,并对潜在的混杂因素进行调整。在所有消防员的miRNA分析中,随访时65个miRNA与基线相比有显著差异,错误发现率为5%。当仅限于在过渡时期有WUI火灾暴露记录的消防员时,结果相似,尽管只有50个显着。肿瘤抑制因子miRNA hsa-miR-518c-3p的表达与WUI火灾反应显著相关(倍数变化0.77,95% CI =[0.69, 0.87])。在DNA甲基化分析中,随着时间的推移,没有发现统计学上显著的变化。总之,野火季节的WUI火灾暴露改变了miRNA的表达,但没有实质性地影响DNA甲基化。
Epigenetic Modifications Associated With Wildland–Urban Interface (WUI) Firefighting
Wildland–urban interface (WUI) firefighting involves exposure to burning vegetation, structures, and other human-made hazards, often without respiratory protection. Response activities can last for long periods of time, spanning multiple days or weeks. Epigenetic modifications, including microRNA (miRNA) expression and DNA methylation, are responsive to toxicant exposures and are part of the development of cancers and other diseases. Epigenetic modifications have not been studied in relation to WUI fires. Firefighters (n = 99) from southern California, including 79 firefighters who responded to at least one WUI fire, provided blood samples at baseline and approximately 10 months later. We quantified the relative abundance of 800 miRNAs in blood samples using the nCounter Human v3 miRNA expression panel and blood leukocyte DNA methylation throughout the genome via the Infinium EPIC array. We used linear mixed models to compare the expression of each miRNA across time and DNA methylation at each locus, adjusting for potential confounders. In the miRNA analysis among all firefighters, 65 miRNAs were significantly different at follow-up compared to baseline at a false discovery rate of 5%. Results were similar when restricted to firefighters with a recorded WUI fire exposure during the interim period, although only 50 were significant. Expression of miRNA hsa-miR-518c-3p, a tumor suppressor, was significantly associated with WUI fire response (fold change 0.77, 95% CI = [0.69, 0.87]). In the DNA methylation analysis, no statistically significant changes over time were identified. In summary, WUI fire exposures over a wildfire season altered miRNA expression but did not substantially impact DNA methylation.
期刊介绍:
Environmental and Molecular Mutagenesis publishes original research manuscripts, reviews and commentaries on topics related to six general areas, with an emphasis on subject matter most suited for the readership of EMM as outlined below. The journal is intended for investigators in fields such as molecular biology, biochemistry, microbiology, genetics and epigenetics, genomics and epigenomics, cancer research, neurobiology, heritable mutation, radiation biology, toxicology, and molecular & environmental epidemiology.