重组腺相关病毒8型产生细胞系的合成平台。

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yu-Chieh Lin, Han-Jung Kuo, Min Lu, Thomas Mahl, George Aslanidi, Wei-Shou Hu
{"title":"重组腺相关病毒8型产生细胞系的合成平台。","authors":"Yu-Chieh Lin, Han-Jung Kuo, Min Lu, Thomas Mahl, George Aslanidi, Wei-Shou Hu","doi":"10.1002/btpr.70009","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant adeno-associated virus (rAAV) is one of the most widely used viral vectors for gene therapy. It is used in very high doses for the treatment of many diseases, making large-scale production for clinical applications challenging. We have established a synthetic biology-based platform to construct stable production cell lines, which can be induced to produce rAAV2. In this study, we extended our cell line construction pipelines for rAAV2 to rAAV8, a serotype whose tropism makes it attractive for gene delivery in multiple tissues. The Genome Module, encoding the rAAV2 genome, and Replication Modules, containing Rep68, DBP and E4orf6 coding sequences, originally used for rAAV2 were retained, but the Packaging Module was modified to replace the AAV2 intron-less cap gene (VP123) with that of AAV8. These three genetic modules were integrated into HEK293 genome to generate four rAAV8 producer cell lines VH1-4, which all produced rAAV8 upon induction. Their productivity was similar to the initial rAAV2 producer cell lines GX2/6 constructed using the same pipeline, but was much lower than conventional triple plasmid transfection. We identified Cap protein production and capsid formation as a potential limiting factor, just as we observed in GX2/6. By integrating more copies of AAV8 VP123 into VH3 clone, the encapsidated rAAV8 titer increased 20-fold to a level comparable to triple transfection. By tuning induction conditions to modulate capsid production, the full particle content could be elevated. This study demonstrated that our rAAV producer cell line development platform is robust and applicable to different AAV serotypes.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e70009"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A synthetic platform for developing recombinant adeno-associated virus type 8 producer cell lines.\",\"authors\":\"Yu-Chieh Lin, Han-Jung Kuo, Min Lu, Thomas Mahl, George Aslanidi, Wei-Shou Hu\",\"doi\":\"10.1002/btpr.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recombinant adeno-associated virus (rAAV) is one of the most widely used viral vectors for gene therapy. It is used in very high doses for the treatment of many diseases, making large-scale production for clinical applications challenging. We have established a synthetic biology-based platform to construct stable production cell lines, which can be induced to produce rAAV2. In this study, we extended our cell line construction pipelines for rAAV2 to rAAV8, a serotype whose tropism makes it attractive for gene delivery in multiple tissues. The Genome Module, encoding the rAAV2 genome, and Replication Modules, containing Rep68, DBP and E4orf6 coding sequences, originally used for rAAV2 were retained, but the Packaging Module was modified to replace the AAV2 intron-less cap gene (VP123) with that of AAV8. These three genetic modules were integrated into HEK293 genome to generate four rAAV8 producer cell lines VH1-4, which all produced rAAV8 upon induction. Their productivity was similar to the initial rAAV2 producer cell lines GX2/6 constructed using the same pipeline, but was much lower than conventional triple plasmid transfection. We identified Cap protein production and capsid formation as a potential limiting factor, just as we observed in GX2/6. By integrating more copies of AAV8 VP123 into VH3 clone, the encapsidated rAAV8 titer increased 20-fold to a level comparable to triple transfection. By tuning induction conditions to modulate capsid production, the full particle content could be elevated. This study demonstrated that our rAAV producer cell line development platform is robust and applicable to different AAV serotypes.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":\" \",\"pages\":\"e70009\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btpr.70009\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.70009","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

重组腺相关病毒(rAAV)是基因治疗中应用最广泛的病毒载体之一。它以非常高的剂量用于治疗许多疾病,使临床应用的大规模生产具有挑战性。我们已经建立了一个基于合成生物学的平台来构建稳定的生产细胞系,可以诱导产生rAAV2。在这项研究中,我们将rAAV2的细胞系构建管道扩展到rAAV8,这是一种血清型,其趋向性使其具有在多种组织中传递基因的吸引力。原用于rAAV2的编码rAAV2基因组的Genome Module和包含Rep68、DBP和E4orf6编码序列的Replication Module被保留,但对包装模块进行了修改,将AAV2无内含子的cap基因(VP123)替换为AAV8的基因。将这三个遗传模块整合到HEK293基因组中,生成4株rAAV8产生细胞株VH1-4,经诱导均产生rAAV8。它们的产量与使用相同管道构建的初始rAAV2产生细胞系GX2/6相似,但远低于传统的三重质粒转染。我们发现Cap蛋白的产生和衣壳的形成是潜在的限制因素,正如我们在GX2/6中观察到的那样。通过将更多的AAV8 VP123拷贝整合到VH3克隆中,封装的rAAV8滴度提高了20倍,达到与三次转染相当的水平。通过调节诱导条件来调节衣壳的产生,可以提高全粒含量。该研究表明,我们的rAAV生产细胞系开发平台是稳健的,适用于不同的AAV血清型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A synthetic platform for developing recombinant adeno-associated virus type 8 producer cell lines.

Recombinant adeno-associated virus (rAAV) is one of the most widely used viral vectors for gene therapy. It is used in very high doses for the treatment of many diseases, making large-scale production for clinical applications challenging. We have established a synthetic biology-based platform to construct stable production cell lines, which can be induced to produce rAAV2. In this study, we extended our cell line construction pipelines for rAAV2 to rAAV8, a serotype whose tropism makes it attractive for gene delivery in multiple tissues. The Genome Module, encoding the rAAV2 genome, and Replication Modules, containing Rep68, DBP and E4orf6 coding sequences, originally used for rAAV2 were retained, but the Packaging Module was modified to replace the AAV2 intron-less cap gene (VP123) with that of AAV8. These three genetic modules were integrated into HEK293 genome to generate four rAAV8 producer cell lines VH1-4, which all produced rAAV8 upon induction. Their productivity was similar to the initial rAAV2 producer cell lines GX2/6 constructed using the same pipeline, but was much lower than conventional triple plasmid transfection. We identified Cap protein production and capsid formation as a potential limiting factor, just as we observed in GX2/6. By integrating more copies of AAV8 VP123 into VH3 clone, the encapsidated rAAV8 titer increased 20-fold to a level comparable to triple transfection. By tuning induction conditions to modulate capsid production, the full particle content could be elevated. This study demonstrated that our rAAV producer cell line development platform is robust and applicable to different AAV serotypes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Progress
Biotechnology Progress 工程技术-生物工程与应用微生物
CiteScore
6.50
自引率
3.40%
发文量
83
审稿时长
4 months
期刊介绍: Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries. Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信