Jurek Czyzowicz, Leszek Gąsieniec, Ryan Killick, Evangelos Kranakis
{"title":"平面上的对称性破坏","authors":"Jurek Czyzowicz, Leszek Gąsieniec, Ryan Killick, Evangelos Kranakis","doi":"10.1007/s00453-024-01286-5","DOIUrl":null,"url":null,"abstract":"<div><p>We study a fundamental question related to the feasibility of deterministic symmetry breaking in the infinite Euclidean plane for two robots that have minimal or no knowledge of the respective capabilities and “measuring instruments” of themselves and each other. Assume that two anonymous mobile robots are placed at different locations at unknown distance <i>d</i> from each other on the infinite Euclidean plane. Each robot knows neither the location of itself nor of the other robot. The robots cannot communicate wirelessly, but have a certain nonzero visibility radius <i>r</i> (with range <i>r</i> unknown to the robots). By rendezvous we mean that they are brought at distance at most <i>r</i> of each other by executing symmetric (identical) mobility algorithms. The robots are moving with unknown and constant but not necessarily identical speeds, their clocks and pedometers may be asymmetric, and their chirality inconsistent. We demonstrate that rendezvous for two robots is feasible under the studied model iff the robots have either: different speeds; or different clocks; or different orientations but equal chiralities. When the rendezvous is feasible, we provide a universal algorithm which always solves rendezvous despite the fact that the robots have no knowledge of which among their respective parameters may be different.\n</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"87 3","pages":"321 - 343"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00453-024-01286-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Symmetry Breaking in the Plane\",\"authors\":\"Jurek Czyzowicz, Leszek Gąsieniec, Ryan Killick, Evangelos Kranakis\",\"doi\":\"10.1007/s00453-024-01286-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a fundamental question related to the feasibility of deterministic symmetry breaking in the infinite Euclidean plane for two robots that have minimal or no knowledge of the respective capabilities and “measuring instruments” of themselves and each other. Assume that two anonymous mobile robots are placed at different locations at unknown distance <i>d</i> from each other on the infinite Euclidean plane. Each robot knows neither the location of itself nor of the other robot. The robots cannot communicate wirelessly, but have a certain nonzero visibility radius <i>r</i> (with range <i>r</i> unknown to the robots). By rendezvous we mean that they are brought at distance at most <i>r</i> of each other by executing symmetric (identical) mobility algorithms. The robots are moving with unknown and constant but not necessarily identical speeds, their clocks and pedometers may be asymmetric, and their chirality inconsistent. We demonstrate that rendezvous for two robots is feasible under the studied model iff the robots have either: different speeds; or different clocks; or different orientations but equal chiralities. When the rendezvous is feasible, we provide a universal algorithm which always solves rendezvous despite the fact that the robots have no knowledge of which among their respective parameters may be different.\\n</p></div>\",\"PeriodicalId\":50824,\"journal\":{\"name\":\"Algorithmica\",\"volume\":\"87 3\",\"pages\":\"321 - 343\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00453-024-01286-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00453-024-01286-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-024-01286-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
We study a fundamental question related to the feasibility of deterministic symmetry breaking in the infinite Euclidean plane for two robots that have minimal or no knowledge of the respective capabilities and “measuring instruments” of themselves and each other. Assume that two anonymous mobile robots are placed at different locations at unknown distance d from each other on the infinite Euclidean plane. Each robot knows neither the location of itself nor of the other robot. The robots cannot communicate wirelessly, but have a certain nonzero visibility radius r (with range r unknown to the robots). By rendezvous we mean that they are brought at distance at most r of each other by executing symmetric (identical) mobility algorithms. The robots are moving with unknown and constant but not necessarily identical speeds, their clocks and pedometers may be asymmetric, and their chirality inconsistent. We demonstrate that rendezvous for two robots is feasible under the studied model iff the robots have either: different speeds; or different clocks; or different orientations but equal chiralities. When the rendezvous is feasible, we provide a universal algorithm which always solves rendezvous despite the fact that the robots have no knowledge of which among their respective parameters may be different.
期刊介绍:
Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential.
Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming.
In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.