{"title":"与重排函数相关的变量Hardy-Lorentz-Karamata空间的插值","authors":"Zhiwei Hao, Libo Li, Ferenc Weisz","doi":"10.1007/s13324-025-01032-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we introduce variable Lorentz–Karamata spaces <span>\\({\\mathcal {L}}_{p(\\cdot ),q,b}(R)\\)</span> defined by rearrangement functions and develop the martingale theory in this framework. The real interpolation theory for variable Lorentz–Karamata spaces is presented. Based on this and the new atomic decomposition, we study the real interpolation theory for variable martingale Hardy–Lorentz–Karamata spaces. We also characterize the real interpolation spaces between variable martingale Hardy spaces and <span>\\(BMO_2\\)</span> spaces. The results obtained here generalize the previous results for variable Lorentz spaces as well as for variable martingale Hardy–Lorentz spaces. Moreover, we remove the condition <span>\\(\\theta +p_->1\\)</span> in [Banach J. Math. Anal. 2023, 17(3): 47].</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01032-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Interpolation of variable Hardy–Lorentz–Karamata spaces associated with rearrangement functions\",\"authors\":\"Zhiwei Hao, Libo Li, Ferenc Weisz\",\"doi\":\"10.1007/s13324-025-01032-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we introduce variable Lorentz–Karamata spaces <span>\\\\({\\\\mathcal {L}}_{p(\\\\cdot ),q,b}(R)\\\\)</span> defined by rearrangement functions and develop the martingale theory in this framework. The real interpolation theory for variable Lorentz–Karamata spaces is presented. Based on this and the new atomic decomposition, we study the real interpolation theory for variable martingale Hardy–Lorentz–Karamata spaces. We also characterize the real interpolation spaces between variable martingale Hardy spaces and <span>\\\\(BMO_2\\\\)</span> spaces. The results obtained here generalize the previous results for variable Lorentz spaces as well as for variable martingale Hardy–Lorentz spaces. Moreover, we remove the condition <span>\\\\(\\\\theta +p_->1\\\\)</span> in [Banach J. Math. Anal. 2023, 17(3): 47].</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13324-025-01032-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01032-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01032-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文引入了由重排函数定义的可变洛伦兹-卡拉马塔空间\({\mathcal {L}}_{p(\cdot ),q,b}(R)\),并在此框架下发展了鞅理论。给出了可变洛伦兹-卡拉玛塔空间的实插值理论。在此基础上,结合新的原子分解,研究了变鞅Hardy-Lorentz-Karamata空间的实插值理论。我们还刻画了变鞅Hardy空间与\(BMO_2\)空间之间的实插值空间。本文的结果推广了之前关于变洛伦兹空间和变鞅Hardy-Lorentz空间的结果。此外,我们删除了[Banach J. Math]中的条件\(\theta +p_->1\)。植物学报,2023,17(3):47。
Interpolation of variable Hardy–Lorentz–Karamata spaces associated with rearrangement functions
In this article, we introduce variable Lorentz–Karamata spaces \({\mathcal {L}}_{p(\cdot ),q,b}(R)\) defined by rearrangement functions and develop the martingale theory in this framework. The real interpolation theory for variable Lorentz–Karamata spaces is presented. Based on this and the new atomic decomposition, we study the real interpolation theory for variable martingale Hardy–Lorentz–Karamata spaces. We also characterize the real interpolation spaces between variable martingale Hardy spaces and \(BMO_2\) spaces. The results obtained here generalize the previous results for variable Lorentz spaces as well as for variable martingale Hardy–Lorentz spaces. Moreover, we remove the condition \(\theta +p_->1\) in [Banach J. Math. Anal. 2023, 17(3): 47].
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.