Edoardo Mastella , Francesca Calderoni , Luigi Manco , Martina Ferioli , Serena Medoro , Alessandro Turra , Melchiore Giganti , Antonio Stefanelli
{"title":"人工智能在头颈癌基于计算机断层成像的自适应放疗自动化中的作用的系统综述","authors":"Edoardo Mastella , Francesca Calderoni , Luigi Manco , Martina Ferioli , Serena Medoro , Alessandro Turra , Melchiore Giganti , Antonio Stefanelli","doi":"10.1016/j.phro.2025.100731","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Adaptive radiotherapy (ART) may improve treatment quality by monitoring variations in patient anatomy and incorporating them into the treatment plan. This systematic review investigated the role of artificial intelligence (AI) in computed tomography (CT)-based ART for head and neck (H&N) cancer.</div></div><div><h3>Methods</h3><div>A comprehensive search of main electronic databases was conducted until April 2024. Titles and abstracts were reviewed to evaluate the compliance with inclusion criteria: CT-based imaging for photon ART of H&N patients and AI applications. 17 original retrospective studies with samples sizes ranging from 37 to 239 patients were included. The quality of the studies was evaluated with the Quality Assessment of Diagnostic Accuracy Studies-2 and the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) tools. Key metrics were examined to evaluate the performances of the proposed AI-methods.</div></div><div><h3>Results</h3><div>Overall, the risk of bias was low. The average CLAIM score was 70%. A major finding was that generated synthetic CTs improved similarity metrics with planning CT compared to original cone-beam CTs, with average mean absolute error up to 39 HU and maximum improvement of 80%. Auto-segmentation provided an efficient and accurate option for organ-at-risk delineation, with average Dice similarity coefficient ranging from 80 to 87%. Finally, AI models could be trained using clinical and radiomic features to predict the effectiveness of ART with accuracy above 80%.</div></div><div><h3>Conclusions</h3><div>Automation of processes in ART for H&N cancer is very promising throughout the entire chain, from the generation of synthetic CTs and auto-segmentation to predict the effectiveness of ART.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100731"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic review of the role of artificial intelligence in automating computed tomography-based adaptive radiotherapy for head and neck cancer\",\"authors\":\"Edoardo Mastella , Francesca Calderoni , Luigi Manco , Martina Ferioli , Serena Medoro , Alessandro Turra , Melchiore Giganti , Antonio Stefanelli\",\"doi\":\"10.1016/j.phro.2025.100731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>Adaptive radiotherapy (ART) may improve treatment quality by monitoring variations in patient anatomy and incorporating them into the treatment plan. This systematic review investigated the role of artificial intelligence (AI) in computed tomography (CT)-based ART for head and neck (H&N) cancer.</div></div><div><h3>Methods</h3><div>A comprehensive search of main electronic databases was conducted until April 2024. Titles and abstracts were reviewed to evaluate the compliance with inclusion criteria: CT-based imaging for photon ART of H&N patients and AI applications. 17 original retrospective studies with samples sizes ranging from 37 to 239 patients were included. The quality of the studies was evaluated with the Quality Assessment of Diagnostic Accuracy Studies-2 and the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) tools. Key metrics were examined to evaluate the performances of the proposed AI-methods.</div></div><div><h3>Results</h3><div>Overall, the risk of bias was low. The average CLAIM score was 70%. A major finding was that generated synthetic CTs improved similarity metrics with planning CT compared to original cone-beam CTs, with average mean absolute error up to 39 HU and maximum improvement of 80%. Auto-segmentation provided an efficient and accurate option for organ-at-risk delineation, with average Dice similarity coefficient ranging from 80 to 87%. Finally, AI models could be trained using clinical and radiomic features to predict the effectiveness of ART with accuracy above 80%.</div></div><div><h3>Conclusions</h3><div>Automation of processes in ART for H&N cancer is very promising throughout the entire chain, from the generation of synthetic CTs and auto-segmentation to predict the effectiveness of ART.</div></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":\"33 \",\"pages\":\"Article 100731\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631625000363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
A systematic review of the role of artificial intelligence in automating computed tomography-based adaptive radiotherapy for head and neck cancer
Purpose
Adaptive radiotherapy (ART) may improve treatment quality by monitoring variations in patient anatomy and incorporating them into the treatment plan. This systematic review investigated the role of artificial intelligence (AI) in computed tomography (CT)-based ART for head and neck (H&N) cancer.
Methods
A comprehensive search of main electronic databases was conducted until April 2024. Titles and abstracts were reviewed to evaluate the compliance with inclusion criteria: CT-based imaging for photon ART of H&N patients and AI applications. 17 original retrospective studies with samples sizes ranging from 37 to 239 patients were included. The quality of the studies was evaluated with the Quality Assessment of Diagnostic Accuracy Studies-2 and the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) tools. Key metrics were examined to evaluate the performances of the proposed AI-methods.
Results
Overall, the risk of bias was low. The average CLAIM score was 70%. A major finding was that generated synthetic CTs improved similarity metrics with planning CT compared to original cone-beam CTs, with average mean absolute error up to 39 HU and maximum improvement of 80%. Auto-segmentation provided an efficient and accurate option for organ-at-risk delineation, with average Dice similarity coefficient ranging from 80 to 87%. Finally, AI models could be trained using clinical and radiomic features to predict the effectiveness of ART with accuracy above 80%.
Conclusions
Automation of processes in ART for H&N cancer is very promising throughout the entire chain, from the generation of synthetic CTs and auto-segmentation to predict the effectiveness of ART.