Di Jiang , Shiyi Li , Irena Hajnsek , Muhammad Adnan Siddique , Wen Hong , Yirong Wu
{"title":"Glacial lake mapping using remote sensing Geo-Foundation Model","authors":"Di Jiang , Shiyi Li , Irena Hajnsek , Muhammad Adnan Siddique , Wen Hong , Yirong Wu","doi":"10.1016/j.jag.2025.104371","DOIUrl":null,"url":null,"abstract":"<div><div>Glacial lakes are vital indicators of climate change, offering insights into glacier dynamics, mass balance, and sea-level rise. However, accurate mapping remains challenging due to the detection of small lakes, shadow interference, and complex terrain conditions. This study introduces the U-ViT model, a novel deep learning framework leveraging the IBM-NASA Prithvi Geo-Foundation Model (GFM) to address these issues. U-ViT employs a U-shaped encoder–decoder architecture featuring enhanced multi-channel data fusion and global-local feature extraction. It integrates an Enhanced Squeeze-Excitation block for flexible fine-tuning across various input dimensions and combines Inverted Bottleneck Blocks to improve local feature representation. The model was trained on two datasets: a Sentinel-1&2 fusion dataset from North Pakistan (NPK) and a Gaofen-3 SAR dataset from West Greenland (WGL). Experimental results highlight the U-ViT model’s effectiveness, achieving an F1 score of 0.894 on the NPK dataset, significantly outperforming traditional CNN-based models with scores below 0.8. It excelled in detecting small lakes, segmenting boundaries precisely, and handling cloud-shadowed features compared to public datasets. Notably, the U-ViT demonstrated robust performance with a 50% reduction in training data, underscoring its potential for efficient learning in data-scarce tasks. However, its performance on the WGL dataset did not surpass that of DeepLabV3+, revealing limitations stemming from differences between pre-training and input data modalities. The code supporting this study is available online. This research sets the stage for advancing large-scale glacial lake mapping through the application of GFMs.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"136 ","pages":"Article 104371"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225000184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Glacial lake mapping using remote sensing Geo-Foundation Model
Glacial lakes are vital indicators of climate change, offering insights into glacier dynamics, mass balance, and sea-level rise. However, accurate mapping remains challenging due to the detection of small lakes, shadow interference, and complex terrain conditions. This study introduces the U-ViT model, a novel deep learning framework leveraging the IBM-NASA Prithvi Geo-Foundation Model (GFM) to address these issues. U-ViT employs a U-shaped encoder–decoder architecture featuring enhanced multi-channel data fusion and global-local feature extraction. It integrates an Enhanced Squeeze-Excitation block for flexible fine-tuning across various input dimensions and combines Inverted Bottleneck Blocks to improve local feature representation. The model was trained on two datasets: a Sentinel-1&2 fusion dataset from North Pakistan (NPK) and a Gaofen-3 SAR dataset from West Greenland (WGL). Experimental results highlight the U-ViT model’s effectiveness, achieving an F1 score of 0.894 on the NPK dataset, significantly outperforming traditional CNN-based models with scores below 0.8. It excelled in detecting small lakes, segmenting boundaries precisely, and handling cloud-shadowed features compared to public datasets. Notably, the U-ViT demonstrated robust performance with a 50% reduction in training data, underscoring its potential for efficient learning in data-scarce tasks. However, its performance on the WGL dataset did not surpass that of DeepLabV3+, revealing limitations stemming from differences between pre-training and input data modalities. The code supporting this study is available online. This research sets the stage for advancing large-scale glacial lake mapping through the application of GFMs.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.