基于机器学习的非均质碳酸盐岩储层物性参数预测

IF 3.6
Fuyong Wang , Xianmu Hou
{"title":"基于机器学习的非均质碳酸盐岩储层物性参数预测","authors":"Fuyong Wang ,&nbsp;Xianmu Hou","doi":"10.1016/j.engeos.2025.100383","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the application of machine learning techniques for predicting permeability, porosity, and flow zone indicator (FZI) in carbonate reservoirs using well log data, aiming to overcome the limitations of traditional empirical methods. Six machine learning algorithms are utilized: support vector machine (SVM), backpropagation (BP) neural network, gaussian process regression (GPR), extreme gradient boosting (XGBoost), K-nearest neighbor (KNN), and random forest (RF). The methodology involves classifying pore-permeability types based on the flow index, leveraging logging curves and geological data. Models are trained using seven logging parameters—spectral gamma rays (SGR), uranium-free gamma rays (CGR), photoelectric absorption cross-section index (PE), lithologic density (RHOB), acoustic transit time (DT), neutron porosity (NPHI), and formation true resistivity (RT)—along with corresponding physical property labels. Machine learning models are trained and evaluated to predict carbonate rock properties. The results demonstrate that GPR achieves the highest accuracy in porosity prediction, with a coefficient of determination (<em>R</em><sup>2</sup>) value of 0.7342, while RF proves to be the most accurate for permeability prediction. Despite these improvements, accurately predicting low-permeability zones in heterogeneous carbonate rocks remains a significant challenge. Application of cross-validation techniques optimized the performance of GPR, resulting in an accuracy index (<em>ACI</em>) value of 0.9699 for porosity prediction. This study provides a novel framework that leverages machine learning techniques to improve the characterization of carbonate reservoirs.</div></div>","PeriodicalId":100469,"journal":{"name":"Energy Geoscience","volume":"6 2","pages":"Article 100383"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based prediction of physical parameters in heterogeneous carbonate reservoirs using well log data\",\"authors\":\"Fuyong Wang ,&nbsp;Xianmu Hou\",\"doi\":\"10.1016/j.engeos.2025.100383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the application of machine learning techniques for predicting permeability, porosity, and flow zone indicator (FZI) in carbonate reservoirs using well log data, aiming to overcome the limitations of traditional empirical methods. Six machine learning algorithms are utilized: support vector machine (SVM), backpropagation (BP) neural network, gaussian process regression (GPR), extreme gradient boosting (XGBoost), K-nearest neighbor (KNN), and random forest (RF). The methodology involves classifying pore-permeability types based on the flow index, leveraging logging curves and geological data. Models are trained using seven logging parameters—spectral gamma rays (SGR), uranium-free gamma rays (CGR), photoelectric absorption cross-section index (PE), lithologic density (RHOB), acoustic transit time (DT), neutron porosity (NPHI), and formation true resistivity (RT)—along with corresponding physical property labels. Machine learning models are trained and evaluated to predict carbonate rock properties. The results demonstrate that GPR achieves the highest accuracy in porosity prediction, with a coefficient of determination (<em>R</em><sup>2</sup>) value of 0.7342, while RF proves to be the most accurate for permeability prediction. Despite these improvements, accurately predicting low-permeability zones in heterogeneous carbonate rocks remains a significant challenge. Application of cross-validation techniques optimized the performance of GPR, resulting in an accuracy index (<em>ACI</em>) value of 0.9699 for porosity prediction. This study provides a novel framework that leverages machine learning techniques to improve the characterization of carbonate reservoirs.</div></div>\",\"PeriodicalId\":100469,\"journal\":{\"name\":\"Energy Geoscience\",\"volume\":\"6 2\",\"pages\":\"Article 100383\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Geoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666759225000046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Geoscience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666759225000046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探索了机器学习技术在利用测井数据预测碳酸盐岩储层渗透率、孔隙度和流动带指标(FZI)方面的应用,旨在克服传统经验方法的局限性。使用了六种机器学习算法:支持向量机(SVM)、反向传播(BP)神经网络、高斯过程回归(GPR)、极端梯度增强(XGBoost)、k最近邻(KNN)和随机森林(RF)。该方法包括根据流动指数、利用测井曲线和地质资料对孔隙渗透率类型进行分类。模型使用7个测井参数进行训练,包括谱伽马射线(SGR)、无铀伽马射线(CGR)、光电吸收截面指数(PE)、岩性密度(RHOB)、声波传输时间(DT)、中子孔隙度(NPHI)和地层真实电阻率(RT),以及相应的物理性质标签。对机器学习模型进行训练和评估,以预测碳酸盐岩的性质。结果表明,探地雷达预测孔隙度精度最高,决定系数(R2)为0.7342,射频预测渗透率精度最高。尽管有了这些改进,但准确预测非均质碳酸盐岩中的低渗透带仍然是一个重大挑战。交叉验证技术的应用优化了探地雷达预测孔隙度的精度指数(ACI)为0.9699。这项研究提供了一个新的框架,利用机器学习技术来改善碳酸盐岩储层的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning-based prediction of physical parameters in heterogeneous carbonate reservoirs using well log data

Machine learning-based prediction of physical parameters in heterogeneous carbonate reservoirs using well log data
This study explores the application of machine learning techniques for predicting permeability, porosity, and flow zone indicator (FZI) in carbonate reservoirs using well log data, aiming to overcome the limitations of traditional empirical methods. Six machine learning algorithms are utilized: support vector machine (SVM), backpropagation (BP) neural network, gaussian process regression (GPR), extreme gradient boosting (XGBoost), K-nearest neighbor (KNN), and random forest (RF). The methodology involves classifying pore-permeability types based on the flow index, leveraging logging curves and geological data. Models are trained using seven logging parameters—spectral gamma rays (SGR), uranium-free gamma rays (CGR), photoelectric absorption cross-section index (PE), lithologic density (RHOB), acoustic transit time (DT), neutron porosity (NPHI), and formation true resistivity (RT)—along with corresponding physical property labels. Machine learning models are trained and evaluated to predict carbonate rock properties. The results demonstrate that GPR achieves the highest accuracy in porosity prediction, with a coefficient of determination (R2) value of 0.7342, while RF proves to be the most accurate for permeability prediction. Despite these improvements, accurately predicting low-permeability zones in heterogeneous carbonate rocks remains a significant challenge. Application of cross-validation techniques optimized the performance of GPR, resulting in an accuracy index (ACI) value of 0.9699 for porosity prediction. This study provides a novel framework that leverages machine learning techniques to improve the characterization of carbonate reservoirs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信