安全双属性索引:对非敏感属性进行批处理成员关系测试

IF 4.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yue Fu, Qingqing Ye, Rong Du, Haibo Hu
{"title":"安全双属性索引:对非敏感属性进行批处理成员关系测试","authors":"Yue Fu,&nbsp;Qingqing Ye,&nbsp;Rong Du,&nbsp;Haibo Hu","doi":"10.1016/j.cose.2025.104369","DOIUrl":null,"url":null,"abstract":"<div><div>Secure index techniques enable keyword searches on encrypted univariate data, but they struggle with bi-attribute data common in AI and data mining applications. Traditional approaches suffer from inefficiencies during prefix queries due to duplicate trapdoor generations. Although plaintext processing of one non-sensitive attribute can boost performance, it may also introduce privacy risks from inter-attribute correlation and potential inference attacks. This paper presents a secure bi-attribute indexing solution, illustrated with a case study on searchable encryption for time-series data. We introduce two variants of matrix Bloom filters tailored for different workloads and implement a concept of bounded privacy loss via noise infusion from the randomized response technique. The outcome adheres to locally differential privacy principles, offering a provable privacy guarantee for sensitive attribute items.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"152 ","pages":"Article 104369"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure bi-attribute index: Batch membership tests over the non-sensitive attribute\",\"authors\":\"Yue Fu,&nbsp;Qingqing Ye,&nbsp;Rong Du,&nbsp;Haibo Hu\",\"doi\":\"10.1016/j.cose.2025.104369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Secure index techniques enable keyword searches on encrypted univariate data, but they struggle with bi-attribute data common in AI and data mining applications. Traditional approaches suffer from inefficiencies during prefix queries due to duplicate trapdoor generations. Although plaintext processing of one non-sensitive attribute can boost performance, it may also introduce privacy risks from inter-attribute correlation and potential inference attacks. This paper presents a secure bi-attribute indexing solution, illustrated with a case study on searchable encryption for time-series data. We introduce two variants of matrix Bloom filters tailored for different workloads and implement a concept of bounded privacy loss via noise infusion from the randomized response technique. The outcome adheres to locally differential privacy principles, offering a provable privacy guarantee for sensitive attribute items.</div></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":\"152 \",\"pages\":\"Article 104369\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167404825000586\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404825000586","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

安全索引技术支持对加密的单变量数据进行关键字搜索,但它们难以处理人工智能和数据挖掘应用中常见的双属性数据。传统方法在前缀查询期间由于重复的陷阱门生成而效率低下。尽管对一个非敏感属性进行明文处理可以提高性能,但它也可能引入属性间关联和潜在推理攻击带来的隐私风险。本文提出了一种安全的双属性索引解决方案,并以时序数据的可搜索加密为例进行了说明。我们引入了针对不同工作负载定制的两种矩阵Bloom滤波器变体,并通过随机响应技术的噪声注入实现了有界隐私损失的概念。结果遵循局部差分隐私原则,为敏感属性项提供可证明的隐私保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secure bi-attribute index: Batch membership tests over the non-sensitive attribute
Secure index techniques enable keyword searches on encrypted univariate data, but they struggle with bi-attribute data common in AI and data mining applications. Traditional approaches suffer from inefficiencies during prefix queries due to duplicate trapdoor generations. Although plaintext processing of one non-sensitive attribute can boost performance, it may also introduce privacy risks from inter-attribute correlation and potential inference attacks. This paper presents a secure bi-attribute indexing solution, illustrated with a case study on searchable encryption for time-series data. We introduce two variants of matrix Bloom filters tailored for different workloads and implement a concept of bounded privacy loss via noise infusion from the randomized response technique. The outcome adheres to locally differential privacy principles, offering a provable privacy guarantee for sensitive attribute items.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Security
Computers & Security 工程技术-计算机:信息系统
CiteScore
12.40
自引率
7.10%
发文量
365
审稿时长
10.7 months
期刊介绍: Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world. Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信