碳注入镍和金薄膜:探索金属碳化物形成实验极限的比较研究

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Niall Malone, Martin Markwitz, Lachlan Andrew Smillie, Geoffrey I. N. Waterhouse, John Vedamuthu Kennedy and Prasanth Gupta*, 
{"title":"碳注入镍和金薄膜:探索金属碳化物形成实验极限的比较研究","authors":"Niall Malone,&nbsp;Martin Markwitz,&nbsp;Lachlan Andrew Smillie,&nbsp;Geoffrey I. N. Waterhouse,&nbsp;John Vedamuthu Kennedy and Prasanth Gupta*,&nbsp;","doi":"10.1021/acs.jpcc.4c0676410.1021/acs.jpcc.4c06764","DOIUrl":null,"url":null,"abstract":"<p >Transition metal carbides exhibit distinctive electrical, mechanical, and physical properties that motivate their use in electrocatalysis, semiconductor devices, cutting tools, and refractory applications. Traditional synthetic approaches utilize thermal energy to overcome the kinetic barrier for carbide formation. However, thermodynamically unfavorable/metastable carbides (Ni<sub>3</sub>C and Au<sub>2</sub>C<sub>2</sub>) typically decompose or rearrange into more thermodynamically favorable phases with prolonged exposure to moderate-to-high temperatures. Herein, we investigate the carburization of nickel and gold thin films using carbon ion implantation (15 kV) at a variety of fluences (1–20 × 10<sup>16</sup> atoms·cm<sup>–2</sup>). This fabrication approach created localized temperatures (&gt;1000 K) which dissipated within tens to hundreds of picoseconds, i.e., thermal spikes, maximizing the chances of forming and retaining metastable carbide phases. Grazing incidence X-ray diffraction, X-ray photoelectron spectroscopy, and scanning transmission electron microscopy were used to identify the phases formed by carbon implantation into the Ni and Au thin films. For implantation into Ni thin films, a single metastable Ni<sub>3</sub>C (trigonal crystal structure) phase was observed for a variety of carbon fluences. At high implantation doses (&gt;1 × 10<sup>17</sup> atoms·cm<sup>–2</sup>), excess carbon precipitated into graphitic clusters. In contrast, the carburization of gold was not achieved even at very high carbon implantation doses, demonstrating that the thermodynamic barriers to the formation of Au–C bonds were not surpassed.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 7","pages":"3483–3492 3483–3492"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon Implantation into Nickel and Gold Thin Films: A Comparative Study Exploring the Experimental Limits of Metal Carbide Formation\",\"authors\":\"Niall Malone,&nbsp;Martin Markwitz,&nbsp;Lachlan Andrew Smillie,&nbsp;Geoffrey I. N. Waterhouse,&nbsp;John Vedamuthu Kennedy and Prasanth Gupta*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.4c0676410.1021/acs.jpcc.4c06764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Transition metal carbides exhibit distinctive electrical, mechanical, and physical properties that motivate their use in electrocatalysis, semiconductor devices, cutting tools, and refractory applications. Traditional synthetic approaches utilize thermal energy to overcome the kinetic barrier for carbide formation. However, thermodynamically unfavorable/metastable carbides (Ni<sub>3</sub>C and Au<sub>2</sub>C<sub>2</sub>) typically decompose or rearrange into more thermodynamically favorable phases with prolonged exposure to moderate-to-high temperatures. Herein, we investigate the carburization of nickel and gold thin films using carbon ion implantation (15 kV) at a variety of fluences (1–20 × 10<sup>16</sup> atoms·cm<sup>–2</sup>). This fabrication approach created localized temperatures (&gt;1000 K) which dissipated within tens to hundreds of picoseconds, i.e., thermal spikes, maximizing the chances of forming and retaining metastable carbide phases. Grazing incidence X-ray diffraction, X-ray photoelectron spectroscopy, and scanning transmission electron microscopy were used to identify the phases formed by carbon implantation into the Ni and Au thin films. For implantation into Ni thin films, a single metastable Ni<sub>3</sub>C (trigonal crystal structure) phase was observed for a variety of carbon fluences. At high implantation doses (&gt;1 × 10<sup>17</sup> atoms·cm<sup>–2</sup>), excess carbon precipitated into graphitic clusters. In contrast, the carburization of gold was not achieved even at very high carbon implantation doses, demonstrating that the thermodynamic barriers to the formation of Au–C bonds were not surpassed.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 7\",\"pages\":\"3483–3492 3483–3492\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c06764\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c06764","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属碳化物具有独特的电气、机械和物理特性,因此被广泛应用于电催化、半导体器件、切削工具和耐火材料等领域。传统的合成方法利用热能来克服碳化物形成的动力学障碍。然而,热力学上不利/易变的碳化物(Ni3C 和 Au2C2)通常会在长期暴露于中高温的情况下分解或重排为热力学上更有利的相。在此,我们采用碳离子注入法(15 kV)和各种通量(1-20 × 1016 原子-厘米-2)研究了镍和金薄膜的渗碳问题。这种制造方法产生了局部温度(1000 K),并在几十到几百皮秒内消散,即热峰值,从而最大限度地增加了形成和保留可转移碳化物相的机会。我们使用了掠入射 X 射线衍射、X 射线光电子能谱和扫描透射电子显微镜来确定镍和金薄膜中碳植入所形成的相。对于镍薄膜的植入,在不同的碳通量下观察到单一的镍3C(三方晶体结构)蜕变相。在高植入剂量(1 × 1017 原子-厘米-2)下,过量的碳沉淀成石墨团块。与此相反,即使在非常高的碳植入剂量下,金也没有渗碳,这表明金-碳键形成的热力学障碍没有被超越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Carbon Implantation into Nickel and Gold Thin Films: A Comparative Study Exploring the Experimental Limits of Metal Carbide Formation

Carbon Implantation into Nickel and Gold Thin Films: A Comparative Study Exploring the Experimental Limits of Metal Carbide Formation

Transition metal carbides exhibit distinctive electrical, mechanical, and physical properties that motivate their use in electrocatalysis, semiconductor devices, cutting tools, and refractory applications. Traditional synthetic approaches utilize thermal energy to overcome the kinetic barrier for carbide formation. However, thermodynamically unfavorable/metastable carbides (Ni3C and Au2C2) typically decompose or rearrange into more thermodynamically favorable phases with prolonged exposure to moderate-to-high temperatures. Herein, we investigate the carburization of nickel and gold thin films using carbon ion implantation (15 kV) at a variety of fluences (1–20 × 1016 atoms·cm–2). This fabrication approach created localized temperatures (>1000 K) which dissipated within tens to hundreds of picoseconds, i.e., thermal spikes, maximizing the chances of forming and retaining metastable carbide phases. Grazing incidence X-ray diffraction, X-ray photoelectron spectroscopy, and scanning transmission electron microscopy were used to identify the phases formed by carbon implantation into the Ni and Au thin films. For implantation into Ni thin films, a single metastable Ni3C (trigonal crystal structure) phase was observed for a variety of carbon fluences. At high implantation doses (>1 × 1017 atoms·cm–2), excess carbon precipitated into graphitic clusters. In contrast, the carburization of gold was not achieved even at very high carbon implantation doses, demonstrating that the thermodynamic barriers to the formation of Au–C bonds were not surpassed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信