氧化铈在Au(111)上的高温生长及其在还原氧化条件下的行为

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Rudi Tschammer, Lars Buß, Emilia Pożarowska, Carlos Morales, Sanjaya D. Senanayake, Mauricio J. Prieto, Liviu C. Tănase, Lucas de Souza Caldas, Aarti Tiwari, Thomas Schmidt, Miguel A. Niño, Michael Foerster, Jens Falta and Jan Ingo Flege*, 
{"title":"氧化铈在Au(111)上的高温生长及其在还原氧化条件下的行为","authors":"Rudi Tschammer,&nbsp;Lars Buß,&nbsp;Emilia Pożarowska,&nbsp;Carlos Morales,&nbsp;Sanjaya D. Senanayake,&nbsp;Mauricio J. Prieto,&nbsp;Liviu C. Tănase,&nbsp;Lucas de Souza Caldas,&nbsp;Aarti Tiwari,&nbsp;Thomas Schmidt,&nbsp;Miguel A. Niño,&nbsp;Michael Foerster,&nbsp;Jens Falta and Jan Ingo Flege*,&nbsp;","doi":"10.1021/acs.jpcc.4c0807210.1021/acs.jpcc.4c08072","DOIUrl":null,"url":null,"abstract":"<p >Inverse oxide–metal model catalysts can show superior activity and selectivity compared with the traditional supported metal–oxide architecture, commonly attributed to the synergistic overlayer–support interaction. We have investigated the growth and redox properties of ceria nanoislands grown on Au(111) between 700 and 890 °C, which yields the CeO<sub>2</sub>–Au(111) model catalyst system. We have observed a distinct correlation between deposition temperature, structural order, and oxide composition through low-energy electron microscopy, low-energy electron diffraction, intensity–voltage curves, and X-ray absorption spectroscopy. Improved structural order and thermal stability of the oxide have been achieved by increasing the oxygen chemical potential at the substrate surface using reactive oxygen (O/O<sub>2</sub>) instead of molecular O<sub>2</sub> during growth. In situ characterization under reducing (H<sub>2</sub>) and oxidizing atmospheres (O<sub>2</sub>, CO<sub>2</sub>) indicates an irreversible loss of structural order and redox activity at high reduction temperatures, while moderate temperatures result in partial decomposition of the ceria nanoislands (Ce<sup>3+</sup>/Ce<sup>4+</sup>) to metallic cerium (Ce<sup>0</sup>). The weak interaction between Au(111) and CeO<sub><i>x</i></sub> would facilitate its reduction to the Ce<sup>0</sup> metallic state, especially considering the comparatively strong interaction between Ce<sup>0</sup> and Au<sup>0</sup>. Besides, the higher reactivity of atomic oxygen promotes a stronger interaction between the gold and oxide islands during the nucleation process, explaining the improved stability. Thus, we propose that by driving the nucleation and growth of the ceria/Au system in a highly oxidizing regime, novel chemical properties can be obtained.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 7","pages":"3583–3594 3583–3594"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.4c08072","citationCount":"0","resultStr":"{\"title\":\"High-Temperature Growth of CeOx on Au(111) and Behavior under Reducing and Oxidizing Conditions\",\"authors\":\"Rudi Tschammer,&nbsp;Lars Buß,&nbsp;Emilia Pożarowska,&nbsp;Carlos Morales,&nbsp;Sanjaya D. Senanayake,&nbsp;Mauricio J. Prieto,&nbsp;Liviu C. Tănase,&nbsp;Lucas de Souza Caldas,&nbsp;Aarti Tiwari,&nbsp;Thomas Schmidt,&nbsp;Miguel A. Niño,&nbsp;Michael Foerster,&nbsp;Jens Falta and Jan Ingo Flege*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.4c0807210.1021/acs.jpcc.4c08072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Inverse oxide–metal model catalysts can show superior activity and selectivity compared with the traditional supported metal–oxide architecture, commonly attributed to the synergistic overlayer–support interaction. We have investigated the growth and redox properties of ceria nanoislands grown on Au(111) between 700 and 890 °C, which yields the CeO<sub>2</sub>–Au(111) model catalyst system. We have observed a distinct correlation between deposition temperature, structural order, and oxide composition through low-energy electron microscopy, low-energy electron diffraction, intensity–voltage curves, and X-ray absorption spectroscopy. Improved structural order and thermal stability of the oxide have been achieved by increasing the oxygen chemical potential at the substrate surface using reactive oxygen (O/O<sub>2</sub>) instead of molecular O<sub>2</sub> during growth. In situ characterization under reducing (H<sub>2</sub>) and oxidizing atmospheres (O<sub>2</sub>, CO<sub>2</sub>) indicates an irreversible loss of structural order and redox activity at high reduction temperatures, while moderate temperatures result in partial decomposition of the ceria nanoislands (Ce<sup>3+</sup>/Ce<sup>4+</sup>) to metallic cerium (Ce<sup>0</sup>). The weak interaction between Au(111) and CeO<sub><i>x</i></sub> would facilitate its reduction to the Ce<sup>0</sup> metallic state, especially considering the comparatively strong interaction between Ce<sup>0</sup> and Au<sup>0</sup>. Besides, the higher reactivity of atomic oxygen promotes a stronger interaction between the gold and oxide islands during the nucleation process, explaining the improved stability. Thus, we propose that by driving the nucleation and growth of the ceria/Au system in a highly oxidizing regime, novel chemical properties can be obtained.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 7\",\"pages\":\"3583–3594 3583–3594\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.4c08072\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c08072\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c08072","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

与传统的支撑金属-氧化物结构相比,反向氧化物-金属模型催化剂可以显示出更高的活性和选择性,这通常归因于协同的覆盖层-支撑相互作用。我们研究了生长在 700 至 890 ° C 之间的金(111)上的铈纳米带的生长和氧化还原特性,从而得到了 CeO2-Au(111) 模型催化剂体系。我们通过低能电子显微镜、低能电子衍射、强度-电压曲线和 X 射线吸收光谱观察到沉积温度、结构阶次和氧化物成分之间存在明显的相关性。在生长过程中,通过使用活性氧(O/O2)而不是分子 O2 来提高基底表面的氧化学势,从而改善了氧化物的结构阶次和热稳定性。在还原气氛(H2)和氧化气氛(O2、CO2)下进行的原位表征表明,在高还原温度下,结构有序性和氧化还原活性会不可逆转地丧失,而在中等温度下,铈纳米带(Ce3+/Ce4+)会部分分解为金属铈(Ce0)。Au(111) 与 CeOx 之间的相互作用较弱,这将促进其还原为 Ce0 金属态,特别是考虑到 Ce0 与 Au0 之间的相互作用相对较强。此外,在成核过程中,原子氧的较高反应活性会促进金与氧化物岛之间更强的相互作用,这也是稳定性提高的原因。因此,我们认为在高氧化状态下推动铈/金体系的成核和生长,可以获得新的化学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Temperature Growth of CeOx on Au(111) and Behavior under Reducing and Oxidizing Conditions

Inverse oxide–metal model catalysts can show superior activity and selectivity compared with the traditional supported metal–oxide architecture, commonly attributed to the synergistic overlayer–support interaction. We have investigated the growth and redox properties of ceria nanoislands grown on Au(111) between 700 and 890 °C, which yields the CeO2–Au(111) model catalyst system. We have observed a distinct correlation between deposition temperature, structural order, and oxide composition through low-energy electron microscopy, low-energy electron diffraction, intensity–voltage curves, and X-ray absorption spectroscopy. Improved structural order and thermal stability of the oxide have been achieved by increasing the oxygen chemical potential at the substrate surface using reactive oxygen (O/O2) instead of molecular O2 during growth. In situ characterization under reducing (H2) and oxidizing atmospheres (O2, CO2) indicates an irreversible loss of structural order and redox activity at high reduction temperatures, while moderate temperatures result in partial decomposition of the ceria nanoislands (Ce3+/Ce4+) to metallic cerium (Ce0). The weak interaction between Au(111) and CeOx would facilitate its reduction to the Ce0 metallic state, especially considering the comparatively strong interaction between Ce0 and Au0. Besides, the higher reactivity of atomic oxygen promotes a stronger interaction between the gold and oxide islands during the nucleation process, explaining the improved stability. Thus, we propose that by driving the nucleation and growth of the ceria/Au system in a highly oxidizing regime, novel chemical properties can be obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信