$$\psi $$ 变系数的hilfer型线性分数阶微分方程

IF 2.5 2区 数学 Q1 MATHEMATICS
Fang Li, Huiwen Wang
{"title":"$$\\psi $$ 变系数的hilfer型线性分数阶微分方程","authors":"Fang Li, Huiwen Wang","doi":"10.1007/s13540-025-00378-5","DOIUrl":null,"url":null,"abstract":"<p>In this study, we establish an explicit representation of solutions to <span>\\(\\psi \\)</span>-Hilfer type linear fractional differential equations with variable coefficients in weighted spaces. Furthermore, we prove the existence and uniqueness of solutions for these equations. As a special case, we derive corresponding results for <span>\\(\\psi \\)</span>-fractional differential equations with variable coefficients. To demonstrate the practical applications of our theoretical results, we derive explicit solutions for several representative cases, including the voltmeter equation in electrochemistry, the equation around an <span>\\(\\alpha \\)</span>-ordinary point, and the fractional Ayre equation. Furthermore, we provide numerical simulations.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"4 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$$\\\\psi $$ -Hilfer type linear fractional differential equations with variable coefficients\",\"authors\":\"Fang Li, Huiwen Wang\",\"doi\":\"10.1007/s13540-025-00378-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we establish an explicit representation of solutions to <span>\\\\(\\\\psi \\\\)</span>-Hilfer type linear fractional differential equations with variable coefficients in weighted spaces. Furthermore, we prove the existence and uniqueness of solutions for these equations. As a special case, we derive corresponding results for <span>\\\\(\\\\psi \\\\)</span>-fractional differential equations with variable coefficients. To demonstrate the practical applications of our theoretical results, we derive explicit solutions for several representative cases, including the voltmeter equation in electrochemistry, the equation around an <span>\\\\(\\\\alpha \\\\)</span>-ordinary point, and the fractional Ayre equation. Furthermore, we provide numerical simulations.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-025-00378-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00378-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了\(\psi \) -Hilfer型变系数线性分数阶微分方程在加权空间中解的显式表示。进一步证明了这些方程解的存在唯一性。作为特例,我们得到了\(\psi \) -分数阶变系数微分方程的相应结果。为了证明我们的理论结果的实际应用,我们推导了几个代表性案例的显式解,包括电化学中的电压表方程,\(\alpha \) -普通点周围的方程和分数Ayre方程。此外,我们提供了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$$\psi $$ -Hilfer type linear fractional differential equations with variable coefficients

In this study, we establish an explicit representation of solutions to \(\psi \)-Hilfer type linear fractional differential equations with variable coefficients in weighted spaces. Furthermore, we prove the existence and uniqueness of solutions for these equations. As a special case, we derive corresponding results for \(\psi \)-fractional differential equations with variable coefficients. To demonstrate the practical applications of our theoretical results, we derive explicit solutions for several representative cases, including the voltmeter equation in electrochemistry, the equation around an \(\alpha \)-ordinary point, and the fractional Ayre equation. Furthermore, we provide numerical simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信