一种新的结构图像相似度统计检测器

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Moustapha Diaw;Florent Retraint;Frédéric Morain-Nicolier;Agnès Delahaies;Jérôme Landré
{"title":"一种新的结构图像相似度统计检测器","authors":"Moustapha Diaw;Florent Retraint;Frédéric Morain-Nicolier;Agnès Delahaies;Jérôme Landré","doi":"10.1109/TSP.2025.3543207","DOIUrl":null,"url":null,"abstract":"Social networks like LinkedIn, Facebook, and Instagram contribute significantly to the rise of image prevalence in daily life, with numerous images posted in everyday. Detecting image similarity is crucial for many applications. While deep learning methods like Learned Perceptual Image Patch Similarity (LPIPS) are popular, they often overlook image structure. An alternative method involves using pre-trained models (<inline-formula><tex-math>$e.g.$</tex-math></inline-formula>, LeNet-<inline-formula><tex-math>$5$</tex-math></inline-formula> and VGG-<inline-formula><tex-math>$16$</tex-math></inline-formula>) to extract features and employing classifiers. However, deep learning methods demand substantial computational resources and they also suffer from uncontrolled false alarms. This paper proposes a novel Generalized Likelihood Ratio Test (GLRT) detector based on a hypothesis testing framework to identify the similarity of structural image pairs. The proposed approach minimizes the need for extensive computational resources, and false alarms can be regulated by employing a threshold. The detector is applied to Local Dissimilarity Maps (LDM), with gray-level values modeled by a statistical distribution. Experimental results on simulated and real data confirm its effectiveness for structural similarity detection. Additionally, a Simple Likelihood Ratio Test (SLRT) is tested on simulated data. Comparisons with deep learning and classical measures like Structural Similarity Index (SSIM) and Feature Similarity Index (FSIM) show the proposed detector performs comparably or better in terms of Area Under the Curve (AUC) with less computing time, especially for structural similarity.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"1168-1183"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Statistic Detector for Structural Image Similarity\",\"authors\":\"Moustapha Diaw;Florent Retraint;Frédéric Morain-Nicolier;Agnès Delahaies;Jérôme Landré\",\"doi\":\"10.1109/TSP.2025.3543207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social networks like LinkedIn, Facebook, and Instagram contribute significantly to the rise of image prevalence in daily life, with numerous images posted in everyday. Detecting image similarity is crucial for many applications. While deep learning methods like Learned Perceptual Image Patch Similarity (LPIPS) are popular, they often overlook image structure. An alternative method involves using pre-trained models (<inline-formula><tex-math>$e.g.$</tex-math></inline-formula>, LeNet-<inline-formula><tex-math>$5$</tex-math></inline-formula> and VGG-<inline-formula><tex-math>$16$</tex-math></inline-formula>) to extract features and employing classifiers. However, deep learning methods demand substantial computational resources and they also suffer from uncontrolled false alarms. This paper proposes a novel Generalized Likelihood Ratio Test (GLRT) detector based on a hypothesis testing framework to identify the similarity of structural image pairs. The proposed approach minimizes the need for extensive computational resources, and false alarms can be regulated by employing a threshold. The detector is applied to Local Dissimilarity Maps (LDM), with gray-level values modeled by a statistical distribution. Experimental results on simulated and real data confirm its effectiveness for structural similarity detection. Additionally, a Simple Likelihood Ratio Test (SLRT) is tested on simulated data. Comparisons with deep learning and classical measures like Structural Similarity Index (SSIM) and Feature Similarity Index (FSIM) show the proposed detector performs comparably or better in terms of Area Under the Curve (AUC) with less computing time, especially for structural similarity.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"1168-1183\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891909/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10891909/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

LinkedIn、Facebook和Instagram等社交网络对日常生活中图像流行度的上升做出了重大贡献,每天都会发布大量的图像。检测图像相似度对于许多应用来说是至关重要的。虽然像LPIPS这样的深度学习方法很流行,但它们往往忽略了图像的结构。另一种方法是使用预训练的模型(例如:$, LeNet-$5$和VGG-$16$)提取特征和使用分类器。然而,深度学习方法需要大量的计算资源,而且它们也会受到不受控制的假警报的影响。本文提出了一种基于假设检验框架的广义似然比检验(GLRT)检测器来识别结构图像对的相似性。所提出的方法最大限度地减少了对大量计算资源的需求,并且可以通过使用阈值来调节假警报。该检测器应用于局部不相似图(LDM),灰度值由统计分布建模。仿真和真实数据的实验结果验证了该方法对结构相似性检测的有效性。此外,对模拟数据进行了简单似然比检验(SLRT)。与深度学习和经典测量方法(如结构相似指数(SSIM)和特征相似指数(FSIM))的比较表明,所提出的检测器在曲线下面积(AUC)方面表现相当或更好,计算时间更少,特别是在结构相似度方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Statistic Detector for Structural Image Similarity
Social networks like LinkedIn, Facebook, and Instagram contribute significantly to the rise of image prevalence in daily life, with numerous images posted in everyday. Detecting image similarity is crucial for many applications. While deep learning methods like Learned Perceptual Image Patch Similarity (LPIPS) are popular, they often overlook image structure. An alternative method involves using pre-trained models ($e.g.$, LeNet-$5$ and VGG-$16$) to extract features and employing classifiers. However, deep learning methods demand substantial computational resources and they also suffer from uncontrolled false alarms. This paper proposes a novel Generalized Likelihood Ratio Test (GLRT) detector based on a hypothesis testing framework to identify the similarity of structural image pairs. The proposed approach minimizes the need for extensive computational resources, and false alarms can be regulated by employing a threshold. The detector is applied to Local Dissimilarity Maps (LDM), with gray-level values modeled by a statistical distribution. Experimental results on simulated and real data confirm its effectiveness for structural similarity detection. Additionally, a Simple Likelihood Ratio Test (SLRT) is tested on simulated data. Comparisons with deep learning and classical measures like Structural Similarity Index (SSIM) and Feature Similarity Index (FSIM) show the proposed detector performs comparably or better in terms of Area Under the Curve (AUC) with less computing time, especially for structural similarity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信