V-PCC编码三维点云感知质量评价的能量自适应比特流层模型

IF 13.7
Wusi Sang;Honglei Su;Qi Liu;Hui Yuan;Zhou Wang
{"title":"V-PCC编码三维点云感知质量评价的能量自适应比特流层模型","authors":"Wusi Sang;Honglei Su;Qi Liu;Hui Yuan;Zhou Wang","doi":"10.1109/TIP.2025.3539465","DOIUrl":null,"url":null,"abstract":"The scope of point cloud (PC) applications is expanding. We propose a no-reference bitstream-layer quality assessment model that eliminates the need for full decoding of the PC, providing quality evaluation scores during the V-PCC decoding process. Specifically, we illustrate the relationship between content diversity (CD) and perceptual coding distortion in lossless geometric coding. Subsequently, we model attribute distortion by predicting CD using transform energy (TE) and texture quantization parameter (TQP). By combining the geometric distortion model with geometry quantization parameters (GQP) and the attribute distortion model, we derive comprehensive quality prediction results. Our experimental results on four PC databases (WPC2.0, M-PCCD, VSENSE VVDB and VSENSE VVDB2) show that the proposed energy-adaptive bitstream-layer model (EABL) delivers competitive quality prediction performance in comparison with existing full-reference, reduced-reference and no-reference PC quality assessment models that require full decoding, and meanwhile exhibits large speed advantage. The source code will be made publicly available for repeatability research at <uri>https://github.com/arthas-sws/EABL_model</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1285-1296"},"PeriodicalIF":13.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Adaptive Bitstream-Layer Model for Perceptual Quality Assessment of V-PCC Encoded 3D Point Clouds\",\"authors\":\"Wusi Sang;Honglei Su;Qi Liu;Hui Yuan;Zhou Wang\",\"doi\":\"10.1109/TIP.2025.3539465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scope of point cloud (PC) applications is expanding. We propose a no-reference bitstream-layer quality assessment model that eliminates the need for full decoding of the PC, providing quality evaluation scores during the V-PCC decoding process. Specifically, we illustrate the relationship between content diversity (CD) and perceptual coding distortion in lossless geometric coding. Subsequently, we model attribute distortion by predicting CD using transform energy (TE) and texture quantization parameter (TQP). By combining the geometric distortion model with geometry quantization parameters (GQP) and the attribute distortion model, we derive comprehensive quality prediction results. Our experimental results on four PC databases (WPC2.0, M-PCCD, VSENSE VVDB and VSENSE VVDB2) show that the proposed energy-adaptive bitstream-layer model (EABL) delivers competitive quality prediction performance in comparison with existing full-reference, reduced-reference and no-reference PC quality assessment models that require full decoding, and meanwhile exhibits large speed advantage. The source code will be made publicly available for repeatability research at <uri>https://github.com/arthas-sws/EABL_model</uri>.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"1285-1296\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891323/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10891323/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

点云(PC)应用的范围正在扩大。我们提出了一种无参考比特流层质量评估模型,该模型消除了PC完全解码的需要,在V-PCC解码过程中提供质量评估分数。具体来说,我们阐述了无损几何编码中内容多样性(CD)与感知编码失真之间的关系。随后,利用变换能量(TE)和纹理量化参数(TQP)对CD进行预测,建立属性失真模型。通过结合几何量化参数(GQP)的几何畸变模型和属性畸变模型,得出综合质量预测结果。在WPC2.0、M-PCCD、VSENSE VVDB和VSENSE VVDB2 4个PC数据库上的实验结果表明,与现有的全参考、减少参考和无参考PC质量评估模型相比,本文提出的能量自适应比特流层模型(EABL)具有较好的质量预测性能,同时具有较大的速度优势。源代码将在https://github.com/arthas-sws/EABL_model上公开,用于可重复性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Adaptive Bitstream-Layer Model for Perceptual Quality Assessment of V-PCC Encoded 3D Point Clouds
The scope of point cloud (PC) applications is expanding. We propose a no-reference bitstream-layer quality assessment model that eliminates the need for full decoding of the PC, providing quality evaluation scores during the V-PCC decoding process. Specifically, we illustrate the relationship between content diversity (CD) and perceptual coding distortion in lossless geometric coding. Subsequently, we model attribute distortion by predicting CD using transform energy (TE) and texture quantization parameter (TQP). By combining the geometric distortion model with geometry quantization parameters (GQP) and the attribute distortion model, we derive comprehensive quality prediction results. Our experimental results on four PC databases (WPC2.0, M-PCCD, VSENSE VVDB and VSENSE VVDB2) show that the proposed energy-adaptive bitstream-layer model (EABL) delivers competitive quality prediction performance in comparison with existing full-reference, reduced-reference and no-reference PC quality assessment models that require full decoding, and meanwhile exhibits large speed advantage. The source code will be made publicly available for repeatability research at https://github.com/arthas-sws/EABL_model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信