多电极阵列系统对高钾心肌细胞的电生理分析。

IF 1.6 Q4 BIOPHYSICS
Biophysics and physicobiology Pub Date : 2024-11-21 eCollection Date: 2024-01-01 DOI:10.2142/biophysico.bppb-v21.0026
Kentaro Kito, Masahito Hayashi, Tomoyuki Kaneko
{"title":"多电极阵列系统对高钾心肌细胞的电生理分析。","authors":"Kentaro Kito, Masahito Hayashi, Tomoyuki Kaneko","doi":"10.2142/biophysico.bppb-v21.0026","DOIUrl":null,"url":null,"abstract":"<p><p>The action potential of cardiomyocytes is controlled by electrolytes in serum such as Na<sup>+</sup>, K<sup>+</sup> and Ca<sup>2+</sup>. Hyperkalemia, which refers to an abnormally high concentration of K<sup>+</sup> in the blood, can induce lethal arrythmia. In this study, the extracellular potentials on a sheet of chick embryonic cardiomyocytes were investigated at increasing K<sup>+</sup> concentrations using a multielectrode array system. We observed that the interspike interval (ISI) was prolonged by approximately 3.5 times; dV/dt (the slope of a waveform) was decreased by more than five times; the field potential duration (FPD) was shortened by 20%, and the conduction velocity was about half at 12 mM K<sup>+</sup> against the control (4 mM K<sup>+</sup>). In calcium therapy for hyperkalemia, although the prolongation of ISI under hyperkalemic conditions was restored, the slowing of conduction velocity, the decrease in dV/dt, and the shortening of FPD were not recovered by increasing the extracellular Ca<sup>2+</sup> concentration. These findings provide a comprehensive understanding of cardiomyocytes in hyperkalemic conditions. Electrophysiological analysis by varying the extracellular concentrations of multiple types of electrolytes will be useful for the further discussion of the results of this study and for the interpretation of the waveforms obtained by measuring the extracellular potential.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 4","pages":"e210026"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832246/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrophysiological analysis of hyperkalemic cardiomyocytes using a multielectrode array system.\",\"authors\":\"Kentaro Kito, Masahito Hayashi, Tomoyuki Kaneko\",\"doi\":\"10.2142/biophysico.bppb-v21.0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The action potential of cardiomyocytes is controlled by electrolytes in serum such as Na<sup>+</sup>, K<sup>+</sup> and Ca<sup>2+</sup>. Hyperkalemia, which refers to an abnormally high concentration of K<sup>+</sup> in the blood, can induce lethal arrythmia. In this study, the extracellular potentials on a sheet of chick embryonic cardiomyocytes were investigated at increasing K<sup>+</sup> concentrations using a multielectrode array system. We observed that the interspike interval (ISI) was prolonged by approximately 3.5 times; dV/dt (the slope of a waveform) was decreased by more than five times; the field potential duration (FPD) was shortened by 20%, and the conduction velocity was about half at 12 mM K<sup>+</sup> against the control (4 mM K<sup>+</sup>). In calcium therapy for hyperkalemia, although the prolongation of ISI under hyperkalemic conditions was restored, the slowing of conduction velocity, the decrease in dV/dt, and the shortening of FPD were not recovered by increasing the extracellular Ca<sup>2+</sup> concentration. These findings provide a comprehensive understanding of cardiomyocytes in hyperkalemic conditions. Electrophysiological analysis by varying the extracellular concentrations of multiple types of electrolytes will be useful for the further discussion of the results of this study and for the interpretation of the waveforms obtained by measuring the extracellular potential.</p>\",\"PeriodicalId\":101323,\"journal\":{\"name\":\"Biophysics and physicobiology\",\"volume\":\"21 4\",\"pages\":\"e210026\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832246/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics and physicobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2142/biophysico.bppb-v21.0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics and physicobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2142/biophysico.bppb-v21.0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

心肌细胞的动作电位受血清中Na+、K+、Ca2+等电解质的控制。高钾血症是指血液中钾离子浓度异常高,可引起致命性心律失常。在本研究中,利用多电极阵列系统研究了增加K+浓度下鸡胚胎心肌细胞片的细胞外电位。我们观察到,刺间间隔(ISI)延长了约3.5倍;dV/dt(波形斜率)降低了5倍以上;电场电位持续时间(FPD)缩短了20%,传导速度在12 mM K+时比对照(4 mM K+)缩短了一半左右。在高钾血症的钙治疗中,虽然恢复了高钾血症条件下ISI的延长,但增加细胞外Ca2+浓度并不能恢复传导速度减慢、dV/dt降低和FPD缩短。这些发现提供了对高钾血症条件下心肌细胞的全面理解。通过改变多种类型电解质的细胞外浓度进行电生理分析,将有助于进一步讨论本研究的结果,并有助于解释通过测量细胞外电位获得的波形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrophysiological analysis of hyperkalemic cardiomyocytes using a multielectrode array system.

The action potential of cardiomyocytes is controlled by electrolytes in serum such as Na+, K+ and Ca2+. Hyperkalemia, which refers to an abnormally high concentration of K+ in the blood, can induce lethal arrythmia. In this study, the extracellular potentials on a sheet of chick embryonic cardiomyocytes were investigated at increasing K+ concentrations using a multielectrode array system. We observed that the interspike interval (ISI) was prolonged by approximately 3.5 times; dV/dt (the slope of a waveform) was decreased by more than five times; the field potential duration (FPD) was shortened by 20%, and the conduction velocity was about half at 12 mM K+ against the control (4 mM K+). In calcium therapy for hyperkalemia, although the prolongation of ISI under hyperkalemic conditions was restored, the slowing of conduction velocity, the decrease in dV/dt, and the shortening of FPD were not recovered by increasing the extracellular Ca2+ concentration. These findings provide a comprehensive understanding of cardiomyocytes in hyperkalemic conditions. Electrophysiological analysis by varying the extracellular concentrations of multiple types of electrolytes will be useful for the further discussion of the results of this study and for the interpretation of the waveforms obtained by measuring the extracellular potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信