提高单结构域催化抗体的热稳定性和溶解度。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yunhang Cui, Xuchen Zhou, Sainan Li, Jingfei Chen, Mingming Qin, Liaoyuan An, Yefei Wang, Lishan Yao
{"title":"提高单结构域催化抗体的热稳定性和溶解度。","authors":"Yunhang Cui, Xuchen Zhou, Sainan Li, Jingfei Chen, Mingming Qin, Liaoyuan An, Yefei Wang, Lishan Yao","doi":"10.1093/protein/gzaf002","DOIUrl":null,"url":null,"abstract":"<p><p>Catalytic antibodies have the ability to bind to and degrade antigens, offering a significant potential for therapeutic use. The light chain of an antibody, UA15-L, can cleave the peptide bond of Helicobacter pylori urease, thus inhibiting the spread of the bacteria. However, the variable domain of UA15-L has a poor thermostability and solubility. In this study, we employed a combined computational and experimental approach to enhance the protein's stability and solubility properties. The protein unfolding hotspots were initially identified using molecular dynamics simulations. Following this, a disulfide bond was designed in an unfolding hotspot to stabilize the protein. Subsequently, protein solubility was enhanced with the assistance of computational methods by introducing polar or charged residues on the protein surface. The combination of multiple mutations resulted in UA15-L variable domain variants with improved thermostability, solubility, expression, and enhanced activity at elevated temperatures. These variants represent promising candidates for further engineering of catalytic activity and specificity.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Thermostability and solubility of a single-domain catalytic antibody.\",\"authors\":\"Yunhang Cui, Xuchen Zhou, Sainan Li, Jingfei Chen, Mingming Qin, Liaoyuan An, Yefei Wang, Lishan Yao\",\"doi\":\"10.1093/protein/gzaf002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Catalytic antibodies have the ability to bind to and degrade antigens, offering a significant potential for therapeutic use. The light chain of an antibody, UA15-L, can cleave the peptide bond of Helicobacter pylori urease, thus inhibiting the spread of the bacteria. However, the variable domain of UA15-L has a poor thermostability and solubility. In this study, we employed a combined computational and experimental approach to enhance the protein's stability and solubility properties. The protein unfolding hotspots were initially identified using molecular dynamics simulations. Following this, a disulfide bond was designed in an unfolding hotspot to stabilize the protein. Subsequently, protein solubility was enhanced with the assistance of computational methods by introducing polar or charged residues on the protein surface. The combination of multiple mutations resulted in UA15-L variable domain variants with improved thermostability, solubility, expression, and enhanced activity at elevated temperatures. These variants represent promising candidates for further engineering of catalytic activity and specificity.</p>\",\"PeriodicalId\":54543,\"journal\":{\"name\":\"Protein Engineering Design & Selection\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Engineering Design & Selection\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzaf002\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzaf002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

催化抗体具有结合和降解抗原的能力,为治疗用途提供了重要的潜力。抗体UA15-L的轻链可以切割幽门螺杆菌脲酶的肽键,从而抑制细菌的传播。然而,UA15-L的可变结构域具有较差的热稳定性和溶解性。在这项研究中,我们采用了计算和实验相结合的方法来提高蛋白质的稳定性和溶解度。蛋白质展开热点最初是通过分子动力学模拟确定的。在此之后,在展开的热点中设计了二硫键来稳定蛋白质。随后,在计算方法的帮助下,通过在蛋白质表面引入极性或带电残基来提高蛋白质的溶解度。多个突变的组合导致UA15-L可变结构域变体具有更好的热稳定性、溶解度、表达和在高温下增强的活性。这些变体代表了催化活性和特异性进一步工程的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the Thermostability and solubility of a single-domain catalytic antibody.

Catalytic antibodies have the ability to bind to and degrade antigens, offering a significant potential for therapeutic use. The light chain of an antibody, UA15-L, can cleave the peptide bond of Helicobacter pylori urease, thus inhibiting the spread of the bacteria. However, the variable domain of UA15-L has a poor thermostability and solubility. In this study, we employed a combined computational and experimental approach to enhance the protein's stability and solubility properties. The protein unfolding hotspots were initially identified using molecular dynamics simulations. Following this, a disulfide bond was designed in an unfolding hotspot to stabilize the protein. Subsequently, protein solubility was enhanced with the assistance of computational methods by introducing polar or charged residues on the protein surface. The combination of multiple mutations resulted in UA15-L variable domain variants with improved thermostability, solubility, expression, and enhanced activity at elevated temperatures. These variants represent promising candidates for further engineering of catalytic activity and specificity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein Engineering Design & Selection
Protein Engineering Design & Selection 生物-生化与分子生物学
CiteScore
3.30
自引率
4.20%
发文量
14
审稿时长
6-12 weeks
期刊介绍: Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信