TongueTransUNet:使用管理良好的数据集进行有效的舌头轮廓分割。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Khalid Al-Hammuri, Fayez Gebali, Awos Kanan
{"title":"TongueTransUNet:使用管理良好的数据集进行有效的舌头轮廓分割。","authors":"Khalid Al-Hammuri, Fayez Gebali, Awos Kanan","doi":"10.1007/s11517-024-03278-7","DOIUrl":null,"url":null,"abstract":"<p><p>In modern telehealth and healthcare information systems medical image analysis is essential to understand the context of the images and its complex structure from large, inconsistent-quality, and distributed datasets. Achieving desired results faces a few challenges for deep learning. Examples of these challenges are date size, labeling, balancing, training, and feature extraction. These challenges made the AI model complex and expensive to be built and difficult to understand which made it a black box and produce hysteresis and irrelevant, illegal, and unethical output in some cases. In this article, lingual ultrasound is studied to extract tongue contour to understand language behavior and language signature and utilize it as biofeedback for different applications. This article introduces a design strategy that can work effectively using a well-managed dynamic-size dataset. It includes a hybrid architecture using UNet, Vision Transformer (ViT), and contrastive loss in latent space to build a foundation model cumulatively. The process starts with building a reference representation in the embedding space using human experts to validate any new input for training data. UNet and ViT encoders are used to extract the input feature representations. The contrastive loss was then compared to the new feature embedding with the reference in the embedding space. The UNet-based decoder is used to reconstruct the image to its original size. Before releasing the final results, quality control is used to assess the segmented contour, and if rejected, the algorithm requests an action from a human expert to annotate it manually. The results show an improved accuracy over the traditional techniques as it contains only high quality and relevant features.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"2295-2309"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TongueTransUNet: toward effective tongue contour segmentation using well-managed dataset.\",\"authors\":\"Khalid Al-Hammuri, Fayez Gebali, Awos Kanan\",\"doi\":\"10.1007/s11517-024-03278-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In modern telehealth and healthcare information systems medical image analysis is essential to understand the context of the images and its complex structure from large, inconsistent-quality, and distributed datasets. Achieving desired results faces a few challenges for deep learning. Examples of these challenges are date size, labeling, balancing, training, and feature extraction. These challenges made the AI model complex and expensive to be built and difficult to understand which made it a black box and produce hysteresis and irrelevant, illegal, and unethical output in some cases. In this article, lingual ultrasound is studied to extract tongue contour to understand language behavior and language signature and utilize it as biofeedback for different applications. This article introduces a design strategy that can work effectively using a well-managed dynamic-size dataset. It includes a hybrid architecture using UNet, Vision Transformer (ViT), and contrastive loss in latent space to build a foundation model cumulatively. The process starts with building a reference representation in the embedding space using human experts to validate any new input for training data. UNet and ViT encoders are used to extract the input feature representations. The contrastive loss was then compared to the new feature embedding with the reference in the embedding space. The UNet-based decoder is used to reconstruct the image to its original size. Before releasing the final results, quality control is used to assess the segmented contour, and if rejected, the algorithm requests an action from a human expert to annotate it manually. The results show an improved accuracy over the traditional techniques as it contains only high quality and relevant features.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"2295-2309\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03278-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03278-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在现代远程医疗和医疗保健信息系统中,医学图像分析对于理解来自大型、质量不一致和分布式数据集的图像及其复杂结构的背景至关重要。对于深度学习来说,实现预期的结果面临着一些挑战。这些挑战的例子包括数据大小、标记、平衡、训练和特征提取。这些挑战使得人工智能模型变得复杂、昂贵、难以理解,这使得它成为一个黑盒子,并在某些情况下产生滞后和不相关、非法和不道德的输出。本文研究利用舌超声提取舌廓线来了解语言行为和语言特征,并将其作为生物反馈应用于不同的应用领域。本文介绍了一种可以使用管理良好的动态大小数据集有效工作的设计策略。它包括使用UNet、视觉变换(Vision Transformer, ViT)和潜在空间对比损失的混合架构,以累积构建基础模型。该过程首先使用人类专家在嵌入空间中构建参考表示,以验证训练数据的任何新输入。使用UNet和ViT编码器提取输入特征表示。然后将对比损失与新特征嵌入与嵌入空间中的参考进行比较。使用基于unet的解码器将图像重建到原始大小。在发布最终结果之前,使用质量控制来评估分割的轮廓,如果被拒绝,算法会请求人类专家手动注释它。结果表明,由于它只包含高质量和相关特征,因此比传统技术的准确性有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TongueTransUNet: toward effective tongue contour segmentation using well-managed dataset.

In modern telehealth and healthcare information systems medical image analysis is essential to understand the context of the images and its complex structure from large, inconsistent-quality, and distributed datasets. Achieving desired results faces a few challenges for deep learning. Examples of these challenges are date size, labeling, balancing, training, and feature extraction. These challenges made the AI model complex and expensive to be built and difficult to understand which made it a black box and produce hysteresis and irrelevant, illegal, and unethical output in some cases. In this article, lingual ultrasound is studied to extract tongue contour to understand language behavior and language signature and utilize it as biofeedback for different applications. This article introduces a design strategy that can work effectively using a well-managed dynamic-size dataset. It includes a hybrid architecture using UNet, Vision Transformer (ViT), and contrastive loss in latent space to build a foundation model cumulatively. The process starts with building a reference representation in the embedding space using human experts to validate any new input for training data. UNet and ViT encoders are used to extract the input feature representations. The contrastive loss was then compared to the new feature embedding with the reference in the embedding space. The UNet-based decoder is used to reconstruct the image to its original size. Before releasing the final results, quality control is used to assess the segmented contour, and if rejected, the algorithm requests an action from a human expert to annotate it manually. The results show an improved accuracy over the traditional techniques as it contains only high quality and relevant features.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信