使用深度学习快速预测主动脉瘤壁剪切应力:CFD的快速替代方案。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Md Ahasan Atick Faisal, Onur Mutlu, Sakib Mahmud, Anas Tahir, Muhammad E H Chowdhury, Faycal Bensaali, Abdulrahman Alnabti, Mehmet Metin Yavuz, Ayman El-Menyar, Hassan Al-Thani, Huseyin Cagatay Yalcin
{"title":"使用深度学习快速预测主动脉瘤壁剪切应力:CFD的快速替代方案。","authors":"Md Ahasan Atick Faisal, Onur Mutlu, Sakib Mahmud, Anas Tahir, Muhammad E H Chowdhury, Faycal Bensaali, Abdulrahman Alnabti, Mehmet Metin Yavuz, Ayman El-Menyar, Hassan Al-Thani, Huseyin Cagatay Yalcin","doi":"10.1007/s11517-025-03311-3","DOIUrl":null,"url":null,"abstract":"<p><p>Aortic aneurysms pose a significant risk of rupture. Previous research has shown that areas exposed to low wall shear stress (WSS) are more prone to rupture. Therefore, precise WSS determination on the aneurysm is crucial for rupture risk assessment. Computational fluid dynamics (CFD) is a powerful approach for WSS calculations, but they are computationally intensive, hindering time-sensitive clinical decision-making. In this study, we propose a deep learning (DL) surrogate, MultiViewUNet, to rapidly predict time-averaged WSS (TAWSS) distributions on abdominal aortic aneurysms (AAA). Our novel approach employs a domain transformation technique to translate complex aortic geometries into representations compatible with state-of-the-art neural networks. MultiViewUNet was trained on <math><mrow><mn>23</mn></mrow> </math> real and <math><mrow><mn>230</mn></mrow> </math> synthetic AAA geometries, demonstrating an average normalized mean absolute error (NMAE) of just <math><mrow><mn>0.362</mn> <mo>%</mo></mrow> </math> in WSS prediction. This framework has the potential to streamline hemodynamic analysis in AAA and other clinical scenarios where fast and accurate stress quantification is essential.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"2173-2190"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204922/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid wall shear stress prediction for aortic aneurysms using deep learning: a fast alternative to CFD.\",\"authors\":\"Md Ahasan Atick Faisal, Onur Mutlu, Sakib Mahmud, Anas Tahir, Muhammad E H Chowdhury, Faycal Bensaali, Abdulrahman Alnabti, Mehmet Metin Yavuz, Ayman El-Menyar, Hassan Al-Thani, Huseyin Cagatay Yalcin\",\"doi\":\"10.1007/s11517-025-03311-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aortic aneurysms pose a significant risk of rupture. Previous research has shown that areas exposed to low wall shear stress (WSS) are more prone to rupture. Therefore, precise WSS determination on the aneurysm is crucial for rupture risk assessment. Computational fluid dynamics (CFD) is a powerful approach for WSS calculations, but they are computationally intensive, hindering time-sensitive clinical decision-making. In this study, we propose a deep learning (DL) surrogate, MultiViewUNet, to rapidly predict time-averaged WSS (TAWSS) distributions on abdominal aortic aneurysms (AAA). Our novel approach employs a domain transformation technique to translate complex aortic geometries into representations compatible with state-of-the-art neural networks. MultiViewUNet was trained on <math><mrow><mn>23</mn></mrow> </math> real and <math><mrow><mn>230</mn></mrow> </math> synthetic AAA geometries, demonstrating an average normalized mean absolute error (NMAE) of just <math><mrow><mn>0.362</mn> <mo>%</mo></mrow> </math> in WSS prediction. This framework has the potential to streamline hemodynamic analysis in AAA and other clinical scenarios where fast and accurate stress quantification is essential.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"2173-2190\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204922/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03311-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03311-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

主动脉瘤有很大的破裂风险。先前的研究表明,暴露在低壁剪切应力(WSS)下的区域更容易破裂。因此,准确测定动脉瘤的WSS对于动脉瘤破裂风险评估至关重要。计算流体动力学(CFD)是一种强大的WSS计算方法,但它们是计算密集型的,阻碍了时间敏感的临床决策。在这项研究中,我们提出了一个深度学习(DL)代理,MultiViewUNet,以快速预测腹主动脉瘤(AAA)的时间平均WSS (TAWSS)分布。我们的新方法采用域变换技术将复杂的主动脉几何形状转化为与最先进的神经网络兼容的表示。MultiViewUNet在23个真实几何图形和230个合成几何图形上进行了训练,在WSS预测中显示出平均归一化平均绝对误差(NMAE)仅为0.362%。该框架有可能简化AAA和其他临床情况下的血流动力学分析,在这些情况下,快速准确的压力量化是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rapid wall shear stress prediction for aortic aneurysms using deep learning: a fast alternative to CFD.

Rapid wall shear stress prediction for aortic aneurysms using deep learning: a fast alternative to CFD.

Rapid wall shear stress prediction for aortic aneurysms using deep learning: a fast alternative to CFD.

Rapid wall shear stress prediction for aortic aneurysms using deep learning: a fast alternative to CFD.

Aortic aneurysms pose a significant risk of rupture. Previous research has shown that areas exposed to low wall shear stress (WSS) are more prone to rupture. Therefore, precise WSS determination on the aneurysm is crucial for rupture risk assessment. Computational fluid dynamics (CFD) is a powerful approach for WSS calculations, but they are computationally intensive, hindering time-sensitive clinical decision-making. In this study, we propose a deep learning (DL) surrogate, MultiViewUNet, to rapidly predict time-averaged WSS (TAWSS) distributions on abdominal aortic aneurysms (AAA). Our novel approach employs a domain transformation technique to translate complex aortic geometries into representations compatible with state-of-the-art neural networks. MultiViewUNet was trained on 23 real and 230 synthetic AAA geometries, demonstrating an average normalized mean absolute error (NMAE) of just 0.362 % in WSS prediction. This framework has the potential to streamline hemodynamic analysis in AAA and other clinical scenarios where fast and accurate stress quantification is essential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信