使用无人机进行时间紧迫的野外搜索和救援的深度强化学习。

IF 2.9 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-02-03 eCollection Date: 2024-01-01 DOI:10.3389/frobt.2024.1527095
Jan-Hendrik Ewers, David Anderson, Douglas Thomson
{"title":"使用无人机进行时间紧迫的野外搜索和救援的深度强化学习。","authors":"Jan-Hendrik Ewers, David Anderson, Douglas Thomson","doi":"10.3389/frobt.2024.1527095","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional search and rescue methods in wilderness areas can be time-consuming and have limited coverage. Drones offer a faster and more flexible solution, but optimizing their search paths is crucial for effective operations. This paper proposes a novel algorithm using deep reinforcement learning to create efficient search paths for drones in wilderness environments. Our approach leverages <i>a priori</i> data about the search area and the missing person in the form of a probability distribution map. This allows the policy to learn optimal flight paths that maximize the probability of finding the missing person quickly. Experimental results show that our method achieves a significant improvement in search times compared to traditional coverage planning and search planning algorithms by over <math><mrow><mn>160</mn> <mi>%</mi></mrow> </math> , a difference that can mean life or death in real-world search operations Additionally, unlike previous work, our approach incorporates a continuous action space enabled by cubature, allowing for more nuanced flight patterns.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"11 ","pages":"1527095"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831046/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep reinforcement learning for time-critical wilderness search and rescue using drones.\",\"authors\":\"Jan-Hendrik Ewers, David Anderson, Douglas Thomson\",\"doi\":\"10.3389/frobt.2024.1527095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional search and rescue methods in wilderness areas can be time-consuming and have limited coverage. Drones offer a faster and more flexible solution, but optimizing their search paths is crucial for effective operations. This paper proposes a novel algorithm using deep reinforcement learning to create efficient search paths for drones in wilderness environments. Our approach leverages <i>a priori</i> data about the search area and the missing person in the form of a probability distribution map. This allows the policy to learn optimal flight paths that maximize the probability of finding the missing person quickly. Experimental results show that our method achieves a significant improvement in search times compared to traditional coverage planning and search planning algorithms by over <math><mrow><mn>160</mn> <mi>%</mi></mrow> </math> , a difference that can mean life or death in real-world search operations Additionally, unlike previous work, our approach incorporates a continuous action space enabled by cubature, allowing for more nuanced flight patterns.</p>\",\"PeriodicalId\":47597,\"journal\":{\"name\":\"Frontiers in Robotics and AI\",\"volume\":\"11 \",\"pages\":\"1527095\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831046/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Robotics and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frobt.2024.1527095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1527095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

在荒野地区,传统的搜索和救援方法既耗时又覆盖范围有限。无人机提供了一个更快、更灵活的解决方案,但优化它们的搜索路径对于有效的行动至关重要。本文提出了一种新的算法,利用深度强化学习为无人机在荒野环境中创建有效的搜索路径。我们的方法以概率分布图的形式利用了关于搜索区域和失踪者的先验数据。这使得该策略能够学习最佳飞行路径,从而最大限度地快速找到失踪者。实验结果表明,与传统的覆盖规划和搜索规划算法相比,我们的方法在搜索时间上实现了超过160%的显著改进,这一差异在现实世界的搜索操作中可能意味着生命或死亡。此外,与以前的工作不同,我们的方法结合了一个由立方体支持的连续行动空间,允许更细微的飞行模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep reinforcement learning for time-critical wilderness search and rescue using drones.

Traditional search and rescue methods in wilderness areas can be time-consuming and have limited coverage. Drones offer a faster and more flexible solution, but optimizing their search paths is crucial for effective operations. This paper proposes a novel algorithm using deep reinforcement learning to create efficient search paths for drones in wilderness environments. Our approach leverages a priori data about the search area and the missing person in the form of a probability distribution map. This allows the policy to learn optimal flight paths that maximize the probability of finding the missing person quickly. Experimental results show that our method achieves a significant improvement in search times compared to traditional coverage planning and search planning algorithms by over 160 % , a difference that can mean life or death in real-world search operations Additionally, unlike previous work, our approach incorporates a continuous action space enabled by cubature, allowing for more nuanced flight patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信