骨髓基质细胞抑制SLC3A2缺失介导的铁凋亡以减轻糖尿病肾病的炎症和纤维化

IF 4.5 2区 医学 Q2 CELL BIOLOGY
Yang Fan, Ya-Ling Li, Li-Lan Huang, Ji Yang, Yue-Yuan Hou, Yi-Hua Bai
{"title":"骨髓基质细胞抑制SLC3A2缺失介导的铁凋亡以减轻糖尿病肾病的炎症和纤维化","authors":"Yang Fan, Ya-Ling Li, Li-Lan Huang, Ji Yang, Yue-Yuan Hou, Yi-Hua Bai","doi":"10.1007/s10753-025-02261-0","DOIUrl":null,"url":null,"abstract":"<p><p>Renal fibrosis and inflammatory infiltration are common pathological features of diabetic kidney disease (DKD). Bone marrow mesenchymal stem cells (BMSCs) are recognized for their anti-fibrotic and anti-inflammatory properties. The objective of this study was to assess the effects of BMSCs on DKD and elucidate their potential mechanisms of action. To assess the role of BMSCs, a DKD model was induced in Sprague-Dawley (SD) rats using streptozotocin (STZ) combined with a high-fat diet, and a human kidney-2 (HK-2) cell damage model was established using high glucose. To investigate the mechanism of the impact of BMSCs on DKD at the genetic level, transcriptome sequencing of the treated HK-2 cells was conducted, identifying the differentially expressed gene SLC3A2, which is related to ferroptosis. A HK-2 cell damage model with SLC3A2 knockout was then constructed to assess the effects of BMSCs on ferroptosis, inflammation, and fibrosis. Also, the potential relationship between BMSCs and the mitogen-activated protein kinase (MAPK) signaling pathway was assessed. In vivo and in vitro studies demonstrated that BMSCs enhanced inflammation and fibrosis in DKD by inhibiting ferroptosis. Knockdown of SLC3A2 promoted ferroptosis, inflammation, and fibrosis, while BMSCs reversed these effects, likely through the inhibition of the MAPK signaling pathway. This research demonstrated that ferroptosis and the activation of the MAPK signaling pathway can promote the onset and progression of DKD. It revealed the therapeutic role of BMSCs in DKD treatment and proposed that SLC3A2 might serve as a potential target for DKD therapy, thereby providing a theoretical foundation for the treatment of DKD.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of SLC3A2 Deletion-Mediated Ferroptosis by Bone Marrow Stromal Cells to Alleviate Inflammation and Fibrosis in Diabetic Kidney Disease.\",\"authors\":\"Yang Fan, Ya-Ling Li, Li-Lan Huang, Ji Yang, Yue-Yuan Hou, Yi-Hua Bai\",\"doi\":\"10.1007/s10753-025-02261-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Renal fibrosis and inflammatory infiltration are common pathological features of diabetic kidney disease (DKD). Bone marrow mesenchymal stem cells (BMSCs) are recognized for their anti-fibrotic and anti-inflammatory properties. The objective of this study was to assess the effects of BMSCs on DKD and elucidate their potential mechanisms of action. To assess the role of BMSCs, a DKD model was induced in Sprague-Dawley (SD) rats using streptozotocin (STZ) combined with a high-fat diet, and a human kidney-2 (HK-2) cell damage model was established using high glucose. To investigate the mechanism of the impact of BMSCs on DKD at the genetic level, transcriptome sequencing of the treated HK-2 cells was conducted, identifying the differentially expressed gene SLC3A2, which is related to ferroptosis. A HK-2 cell damage model with SLC3A2 knockout was then constructed to assess the effects of BMSCs on ferroptosis, inflammation, and fibrosis. Also, the potential relationship between BMSCs and the mitogen-activated protein kinase (MAPK) signaling pathway was assessed. In vivo and in vitro studies demonstrated that BMSCs enhanced inflammation and fibrosis in DKD by inhibiting ferroptosis. Knockdown of SLC3A2 promoted ferroptosis, inflammation, and fibrosis, while BMSCs reversed these effects, likely through the inhibition of the MAPK signaling pathway. This research demonstrated that ferroptosis and the activation of the MAPK signaling pathway can promote the onset and progression of DKD. It revealed the therapeutic role of BMSCs in DKD treatment and proposed that SLC3A2 might serve as a potential target for DKD therapy, thereby providing a theoretical foundation for the treatment of DKD.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-025-02261-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-025-02261-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肾脏纤维化和炎症浸润是糖尿病肾病(DKD)的常见病理特征。骨髓间充质干细胞(BMSCs)具有抗纤维化和抗炎的特性。本研究的目的是评估骨髓间充质干细胞对DKD的影响,并阐明其潜在的作用机制。为了评估BMSCs的作用,我们采用链脲佐菌素(STZ)联合高脂饮食诱导SD大鼠DKD模型,并采用高糖建立人肾-2 (HK-2)细胞损伤模型。为了从基因水平探讨骨髓间质干细胞对DKD影响的机制,我们对处理过的HK-2细胞进行转录组测序,鉴定出与铁凋亡相关的差异表达基因SLC3A2。然后构建SLC3A2敲除的HK-2细胞损伤模型,以评估骨髓间充质干细胞对铁凋亡、炎症和纤维化的影响。此外,我们还评估了骨髓间充质干细胞与丝裂原活化蛋白激酶(MAPK)信号通路之间的潜在关系。体内和体外研究表明,骨髓间充质干细胞通过抑制铁下垂来增强DKD的炎症和纤维化。SLC3A2的敲低促进铁凋亡、炎症和纤维化,而骨髓间质干细胞逆转这些作用,可能是通过抑制MAPK信号通路。本研究表明,铁下垂和MAPK信号通路的激活可促进DKD的发生和发展。揭示了骨髓间质干细胞在DKD治疗中的治疗作用,并提出SLC3A2可能作为DKD治疗的潜在靶点,从而为DKD的治疗提供理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhibition of SLC3A2 Deletion-Mediated Ferroptosis by Bone Marrow Stromal Cells to Alleviate Inflammation and Fibrosis in Diabetic Kidney Disease.

Renal fibrosis and inflammatory infiltration are common pathological features of diabetic kidney disease (DKD). Bone marrow mesenchymal stem cells (BMSCs) are recognized for their anti-fibrotic and anti-inflammatory properties. The objective of this study was to assess the effects of BMSCs on DKD and elucidate their potential mechanisms of action. To assess the role of BMSCs, a DKD model was induced in Sprague-Dawley (SD) rats using streptozotocin (STZ) combined with a high-fat diet, and a human kidney-2 (HK-2) cell damage model was established using high glucose. To investigate the mechanism of the impact of BMSCs on DKD at the genetic level, transcriptome sequencing of the treated HK-2 cells was conducted, identifying the differentially expressed gene SLC3A2, which is related to ferroptosis. A HK-2 cell damage model with SLC3A2 knockout was then constructed to assess the effects of BMSCs on ferroptosis, inflammation, and fibrosis. Also, the potential relationship between BMSCs and the mitogen-activated protein kinase (MAPK) signaling pathway was assessed. In vivo and in vitro studies demonstrated that BMSCs enhanced inflammation and fibrosis in DKD by inhibiting ferroptosis. Knockdown of SLC3A2 promoted ferroptosis, inflammation, and fibrosis, while BMSCs reversed these effects, likely through the inhibition of the MAPK signaling pathway. This research demonstrated that ferroptosis and the activation of the MAPK signaling pathway can promote the onset and progression of DKD. It revealed the therapeutic role of BMSCs in DKD treatment and proposed that SLC3A2 might serve as a potential target for DKD therapy, thereby providing a theoretical foundation for the treatment of DKD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inflammation
Inflammation 医学-免疫学
CiteScore
9.70
自引率
0.00%
发文量
168
审稿时长
3.0 months
期刊介绍: Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信