{"title":"可信跨视图完成用于不完整的多视图分类","authors":"Liping Zhou, Shiyun Chen, Peihuan Song, Qinghai Zheng, Yuanlong Yu","doi":"10.1016/j.neucom.2025.129722","DOIUrl":null,"url":null,"abstract":"<div><div>In real-world scenarios, missing views is common due to the complexity of data collection. Therefore, it is inevitable to classify incomplete multi-view data. Although substantial progress has been achieved, there are still two challenging problems with incomplete multi-view classification: (1) Simply ignoring these missing views is often ineffective, especially under high missing rates, which can lead to incomplete analysis and unreliable results. (2) Most existing multi-view classification models primarily focus on maximizing consistency between different views. However, neglecting specific-view information may lead to decreased performance. To solve the above problems, we propose a novel framework called Trusted Cross-View Completion (TCVC) for incomplete multi-view classification. Specifically, TCVC consists of three modules: Cross-view Feature Learning Module (CVFL), Imputation Module (IM) and Trusted Fusion Module (TFM). First, CVFL mines specific-view information to obtain cross-view reconstruction features. Then, IM restores the missing view by fusing cross-view reconstruction features with weights, guided by uncertainty-aware information. This information is the quality assessment of the cross-view reconstruction features in TFM. Moreover, the recovered views are supervised by cross-view neighborhood-aware. Finally, TFM effectively fuses complete data to generate trusted classification predictions. Extensive experiments show that our method is effective and robust.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"629 ","pages":"Article 129722"},"PeriodicalIF":6.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trusted Cross-view Completion for incomplete multi-view classification\",\"authors\":\"Liping Zhou, Shiyun Chen, Peihuan Song, Qinghai Zheng, Yuanlong Yu\",\"doi\":\"10.1016/j.neucom.2025.129722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In real-world scenarios, missing views is common due to the complexity of data collection. Therefore, it is inevitable to classify incomplete multi-view data. Although substantial progress has been achieved, there are still two challenging problems with incomplete multi-view classification: (1) Simply ignoring these missing views is often ineffective, especially under high missing rates, which can lead to incomplete analysis and unreliable results. (2) Most existing multi-view classification models primarily focus on maximizing consistency between different views. However, neglecting specific-view information may lead to decreased performance. To solve the above problems, we propose a novel framework called Trusted Cross-View Completion (TCVC) for incomplete multi-view classification. Specifically, TCVC consists of three modules: Cross-view Feature Learning Module (CVFL), Imputation Module (IM) and Trusted Fusion Module (TFM). First, CVFL mines specific-view information to obtain cross-view reconstruction features. Then, IM restores the missing view by fusing cross-view reconstruction features with weights, guided by uncertainty-aware information. This information is the quality assessment of the cross-view reconstruction features in TFM. Moreover, the recovered views are supervised by cross-view neighborhood-aware. Finally, TFM effectively fuses complete data to generate trusted classification predictions. Extensive experiments show that our method is effective and robust.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"629 \",\"pages\":\"Article 129722\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225003947\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225003947","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Trusted Cross-view Completion for incomplete multi-view classification
In real-world scenarios, missing views is common due to the complexity of data collection. Therefore, it is inevitable to classify incomplete multi-view data. Although substantial progress has been achieved, there are still two challenging problems with incomplete multi-view classification: (1) Simply ignoring these missing views is often ineffective, especially under high missing rates, which can lead to incomplete analysis and unreliable results. (2) Most existing multi-view classification models primarily focus on maximizing consistency between different views. However, neglecting specific-view information may lead to decreased performance. To solve the above problems, we propose a novel framework called Trusted Cross-View Completion (TCVC) for incomplete multi-view classification. Specifically, TCVC consists of three modules: Cross-view Feature Learning Module (CVFL), Imputation Module (IM) and Trusted Fusion Module (TFM). First, CVFL mines specific-view information to obtain cross-view reconstruction features. Then, IM restores the missing view by fusing cross-view reconstruction features with weights, guided by uncertainty-aware information. This information is the quality assessment of the cross-view reconstruction features in TFM. Moreover, the recovered views are supervised by cross-view neighborhood-aware. Finally, TFM effectively fuses complete data to generate trusted classification predictions. Extensive experiments show that our method is effective and robust.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.