特殊手术对双曲节产生的3链

Alberto Cavicchioli, Fulvia Spaggiari
{"title":"特殊手术对双曲节产生的3链","authors":"Alberto Cavicchioli,&nbsp;Fulvia Spaggiari","doi":"10.1016/j.exco.2025.100182","DOIUrl":null,"url":null,"abstract":"<div><div>We study some closed connected orientable 3–manifolds obtained by Dehn surgery along the oriented components of the 3-chain link. For such manifolds, we describe exceptional surgeries related to some results from Audoux et al. (2018) and Martelli and Petronio (2006). Then we construct a related family of hyperbolic knots in the 3-sphere, which admit two consecutive Seifert fibered surgeries and two toroidal fillings at distance 3. Such additional examples are not mentioned in the quoted papers.</div></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"7 ","pages":"Article 100182"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exceptional surgeries on hyperbolic knots arising from the 3-chain link\",\"authors\":\"Alberto Cavicchioli,&nbsp;Fulvia Spaggiari\",\"doi\":\"10.1016/j.exco.2025.100182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study some closed connected orientable 3–manifolds obtained by Dehn surgery along the oriented components of the 3-chain link. For such manifolds, we describe exceptional surgeries related to some results from Audoux et al. (2018) and Martelli and Petronio (2006). Then we construct a related family of hyperbolic knots in the 3-sphere, which admit two consecutive Seifert fibered surgeries and two toroidal fillings at distance 3. Such additional examples are not mentioned in the quoted papers.</div></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"7 \",\"pages\":\"Article 100182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X25000096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X25000096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了由Dehn手术得到的沿3链环取向分量的闭连通可定向3流形。对于这样的流形,我们描述了与Audoux等人(2018)和Martelli和Petronio(2006)的一些结果相关的特殊手术。然后我们在3球上构造了一个相关的双曲结族,它允许在距离3处进行两次连续的Seifert纤维手术和两次环面填充。这些额外的例子在引用的论文中没有提到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exceptional surgeries on hyperbolic knots arising from the 3-chain link
We study some closed connected orientable 3–manifolds obtained by Dehn surgery along the oriented components of the 3-chain link. For such manifolds, we describe exceptional surgeries related to some results from Audoux et al. (2018) and Martelli and Petronio (2006). Then we construct a related family of hyperbolic knots in the 3-sphere, which admit two consecutive Seifert fibered surgeries and two toroidal fillings at distance 3. Such additional examples are not mentioned in the quoted papers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信