部分负扩散方程中激波选择的非线性正则化

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Thomas Miller , Alexander K.Y. Tam , Robert Marangell , Martin Wechselberger , Bronwyn H. Bradshaw-Hajek
{"title":"部分负扩散方程中激波选择的非线性正则化","authors":"Thomas Miller ,&nbsp;Alexander K.Y. Tam ,&nbsp;Robert Marangell ,&nbsp;Martin Wechselberger ,&nbsp;Bronwyn H. Bradshaw-Hajek","doi":"10.1016/j.physd.2025.134561","DOIUrl":null,"url":null,"abstract":"<div><div>Solutions to reaction–nonlinear-diffusion (RND) equations with a region of negative diffusivity exhibit shocks. In general, the position of these shocks can vary, necessitating selection criteria to determine a unique shock. Previous studies have defined conditions for shock selection. A common choice is the equal area rule, which corresponds to a fourth-order non-local regularisation to the RND equation. Bradshaw-Hajek et al. (2024) showed that combining non-local and viscous regularisations can yield a continuum of possible shocks. In this work, we demonstrate how to achieve a continuum of shocks using a single nonlinear regularisation term. With one nonlinear regularisation, shock selection obeys a modified equal area rule, where adjusting the nonlinearity in the regularisation moves the shock. To demonstrate the technique, we attain solutions with conserved diffusivity across the shock, which yield the longest shock length possible. Using geometric singular perturbation theory, we prove the existence of travelling waves with continuous diffusivity shocks. Numerical solutions align with theoretical predictions for shock position and wave speed.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"474 ","pages":"Article 134561"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shock selection in reaction–diffusion equations with partially negative diffusivity using nonlinear regularisation\",\"authors\":\"Thomas Miller ,&nbsp;Alexander K.Y. Tam ,&nbsp;Robert Marangell ,&nbsp;Martin Wechselberger ,&nbsp;Bronwyn H. Bradshaw-Hajek\",\"doi\":\"10.1016/j.physd.2025.134561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solutions to reaction–nonlinear-diffusion (RND) equations with a region of negative diffusivity exhibit shocks. In general, the position of these shocks can vary, necessitating selection criteria to determine a unique shock. Previous studies have defined conditions for shock selection. A common choice is the equal area rule, which corresponds to a fourth-order non-local regularisation to the RND equation. Bradshaw-Hajek et al. (2024) showed that combining non-local and viscous regularisations can yield a continuum of possible shocks. In this work, we demonstrate how to achieve a continuum of shocks using a single nonlinear regularisation term. With one nonlinear regularisation, shock selection obeys a modified equal area rule, where adjusting the nonlinearity in the regularisation moves the shock. To demonstrate the technique, we attain solutions with conserved diffusivity across the shock, which yield the longest shock length possible. Using geometric singular perturbation theory, we prove the existence of travelling waves with continuous diffusivity shocks. Numerical solutions align with theoretical predictions for shock position and wave speed.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"474 \",\"pages\":\"Article 134561\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925000405\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925000405","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

具有负扩散系数区域的反应-非线性-扩散(RND)方程的解表现为激波。一般来说,这些冲击的位置可以变化,需要选择标准来确定一个独特的冲击。先前的研究已经确定了冲击选择的条件。一个常见的选择是等面积规则,它对应于RND方程的四阶非局部正则化。Bradshaw-Hajek等人(2024)表明,结合非局部和粘性正则化可以产生连续的可能冲击。在这项工作中,我们演示了如何使用单个非线性正则化项实现连续的冲击。对于一个非线性正则化,激波选择遵循修正的等面积规则,其中调整正则化中的非线性会移动激波。为了演示该技术,我们获得了激波扩散系数守恒的解决方案,从而产生了最长的激波长度。利用几何奇异摄动理论,证明了具有连续扩散性激波的行波的存在性。数值解与激波位置和波速的理论预测一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shock selection in reaction–diffusion equations with partially negative diffusivity using nonlinear regularisation
Solutions to reaction–nonlinear-diffusion (RND) equations with a region of negative diffusivity exhibit shocks. In general, the position of these shocks can vary, necessitating selection criteria to determine a unique shock. Previous studies have defined conditions for shock selection. A common choice is the equal area rule, which corresponds to a fourth-order non-local regularisation to the RND equation. Bradshaw-Hajek et al. (2024) showed that combining non-local and viscous regularisations can yield a continuum of possible shocks. In this work, we demonstrate how to achieve a continuum of shocks using a single nonlinear regularisation term. With one nonlinear regularisation, shock selection obeys a modified equal area rule, where adjusting the nonlinearity in the regularisation moves the shock. To demonstrate the technique, we attain solutions with conserved diffusivity across the shock, which yield the longest shock length possible. Using geometric singular perturbation theory, we prove the existence of travelling waves with continuous diffusivity shocks. Numerical solutions align with theoretical predictions for shock position and wave speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信