T. Eich , T. Body , M. Faitsch , O. Grover , M.A. Miller , P. Manz , T. Looby , A.Q. Kuang , A. Redl , M. Reinke , A.J. Creely , D. Battaglia , J. Hillesheim , M. Wigram , J.W. Hughes , ASDEX Upgrade team
{"title":"下一步聚变实验的分离矩阵运行空间:从 ASDEX 升级数据到 SPARC 方案","authors":"T. Eich , T. Body , M. Faitsch , O. Grover , M.A. Miller , P. Manz , T. Looby , A.Q. Kuang , A. Redl , M. Reinke , A.J. Creely , D. Battaglia , J. Hillesheim , M. Wigram , J.W. Hughes , ASDEX Upgrade team","doi":"10.1016/j.nme.2025.101896","DOIUrl":null,"url":null,"abstract":"<div><div>Fusion power plants require ELM-free, detached operation to prevent divertor damage and erosion. The separatrix operational space (SepOS) is proposed as a tool for identifying access to the type-I ELM-free quasi-continuous exhaust regime. In this work, we recast the SepOS framework using simple parameters and present dedicated ASDEX Upgrade discharges to demonstrate how to interpret its results. Analyzing an extended ASDEX Upgrade database consisting of 6688 individual measurements, we show that SepOS accurately describes how the H-mode boundary varies with plasma current and magnetic field strength. We then introduce a normalized SepOS framework and LH minimum scaling and show that normalized H-Mode boundaries across multiple machines are nearly identical, suggesting that the normalized SepOS can be used to translate results between different machines. The LH minimum density predicted by SepOS is found to closely match an experimentally determined multi-machine scaling, which provides a further indirect validation of SepOS across multiple devices. Finally, we demonstrate how SepOS can be used predictively, identifying a viable type-I ELM free Quasi-Continuous-Exhaust (QCE) operational point for SPARC, at <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>e</mi><mo>,</mo><mi>s</mi><mi>e</mi><mi>p</mi></mrow></msub><mo>=</mo><mn>4</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>20</mn></mrow></msup><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>, <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>e</mi><mo>,</mo><mi>s</mi><mi>e</mi><mi>p</mi></mrow></msub><mo>=</mo><mn>156</mn><mi>e</mi><mi>V</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></math></span> — a value solidly within the QCE operational space on ASDEX Upgrade. This demonstrates how SepOS provides a concise, intuitive method for scoping ELM-free operation on next-step devices.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"42 ","pages":"Article 101896"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The separatrix operational space of next-step fusion experiments: From ASDEX Upgrade data to SPARC scenarios\",\"authors\":\"T. Eich , T. Body , M. Faitsch , O. Grover , M.A. Miller , P. Manz , T. Looby , A.Q. Kuang , A. Redl , M. Reinke , A.J. Creely , D. Battaglia , J. Hillesheim , M. Wigram , J.W. Hughes , ASDEX Upgrade team\",\"doi\":\"10.1016/j.nme.2025.101896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fusion power plants require ELM-free, detached operation to prevent divertor damage and erosion. The separatrix operational space (SepOS) is proposed as a tool for identifying access to the type-I ELM-free quasi-continuous exhaust regime. In this work, we recast the SepOS framework using simple parameters and present dedicated ASDEX Upgrade discharges to demonstrate how to interpret its results. Analyzing an extended ASDEX Upgrade database consisting of 6688 individual measurements, we show that SepOS accurately describes how the H-mode boundary varies with plasma current and magnetic field strength. We then introduce a normalized SepOS framework and LH minimum scaling and show that normalized H-Mode boundaries across multiple machines are nearly identical, suggesting that the normalized SepOS can be used to translate results between different machines. The LH minimum density predicted by SepOS is found to closely match an experimentally determined multi-machine scaling, which provides a further indirect validation of SepOS across multiple devices. Finally, we demonstrate how SepOS can be used predictively, identifying a viable type-I ELM free Quasi-Continuous-Exhaust (QCE) operational point for SPARC, at <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>e</mi><mo>,</mo><mi>s</mi><mi>e</mi><mi>p</mi></mrow></msub><mo>=</mo><mn>4</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>20</mn></mrow></msup><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>, <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>e</mi><mo>,</mo><mi>s</mi><mi>e</mi><mi>p</mi></mrow></msub><mo>=</mo><mn>156</mn><mi>e</mi><mi>V</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></math></span> — a value solidly within the QCE operational space on ASDEX Upgrade. This demonstrates how SepOS provides a concise, intuitive method for scoping ELM-free operation on next-step devices.</div></div>\",\"PeriodicalId\":56004,\"journal\":{\"name\":\"Nuclear Materials and Energy\",\"volume\":\"42 \",\"pages\":\"Article 101896\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Materials and Energy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352179125000365\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179125000365","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The separatrix operational space of next-step fusion experiments: From ASDEX Upgrade data to SPARC scenarios
Fusion power plants require ELM-free, detached operation to prevent divertor damage and erosion. The separatrix operational space (SepOS) is proposed as a tool for identifying access to the type-I ELM-free quasi-continuous exhaust regime. In this work, we recast the SepOS framework using simple parameters and present dedicated ASDEX Upgrade discharges to demonstrate how to interpret its results. Analyzing an extended ASDEX Upgrade database consisting of 6688 individual measurements, we show that SepOS accurately describes how the H-mode boundary varies with plasma current and magnetic field strength. We then introduce a normalized SepOS framework and LH minimum scaling and show that normalized H-Mode boundaries across multiple machines are nearly identical, suggesting that the normalized SepOS can be used to translate results between different machines. The LH minimum density predicted by SepOS is found to closely match an experimentally determined multi-machine scaling, which provides a further indirect validation of SepOS across multiple devices. Finally, we demonstrate how SepOS can be used predictively, identifying a viable type-I ELM free Quasi-Continuous-Exhaust (QCE) operational point for SPARC, at , and — a value solidly within the QCE operational space on ASDEX Upgrade. This demonstrates how SepOS provides a concise, intuitive method for scoping ELM-free operation on next-step devices.
期刊介绍:
The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.