随机双曲型3流形的长度谱

IF 1.5 1区 数学 Q1 MATHEMATICS
Anna Roig-Sanchis
{"title":"随机双曲型3流形的长度谱","authors":"Anna Roig-Sanchis","doi":"10.1016/j.aim.2025.110158","DOIUrl":null,"url":null,"abstract":"<div><div>We study the length spectrum of a model of random hyperbolic 3-manifolds introduced in <span><span>[31]</span></span>. These are compact manifolds with boundary constructed by randomly gluing truncated tetrahedra along their faces. We prove that, as the volume tends to infinity, their length spectrum converge in distribution to a Poisson point process on <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>&gt;</mo><mn>0</mn></mrow></msub></math></span>, with computable intensity <em>λ</em>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"466 ","pages":"Article 110158"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The length spectrum of random hyperbolic 3-manifolds\",\"authors\":\"Anna Roig-Sanchis\",\"doi\":\"10.1016/j.aim.2025.110158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the length spectrum of a model of random hyperbolic 3-manifolds introduced in <span><span>[31]</span></span>. These are compact manifolds with boundary constructed by randomly gluing truncated tetrahedra along their faces. We prove that, as the volume tends to infinity, their length spectrum converge in distribution to a Poisson point process on <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>&gt;</mo><mn>0</mn></mrow></msub></math></span>, with computable intensity <em>λ</em>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"466 \",\"pages\":\"Article 110158\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825000568\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825000568","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了[31]中引入的随机双曲型3-流形模型的长度谱。这些是紧致流形,其边界是由沿其面随机粘合截断的四面体构造的。证明了当体积趋于无穷大时,它们的长度谱在分布上收敛于R>;0上的泊松点过程,且强度λ可计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The length spectrum of random hyperbolic 3-manifolds
We study the length spectrum of a model of random hyperbolic 3-manifolds introduced in [31]. These are compact manifolds with boundary constructed by randomly gluing truncated tetrahedra along their faces. We prove that, as the volume tends to infinity, their length spectrum converge in distribution to a Poisson point process on R>0, with computable intensity λ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信