Hyperbox混合回归用于抗体生产过程性能预测

IF 3 Q2 ENGINEERING, CHEMICAL
Ali Nik-Khorasani , Thanh Tung Khuat , Bogdan Gabrys
{"title":"Hyperbox混合回归用于抗体生产过程性能预测","authors":"Ali Nik-Khorasani ,&nbsp;Thanh Tung Khuat ,&nbsp;Bogdan Gabrys","doi":"10.1016/j.dche.2025.100221","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the challenges of predicting bioprocess performance, particularly in monoclonal antibody (mAb) production, where conventional statistical methods often fall short due to time-series data’s complexity and high dimensionality. We propose a novel Hyperbox Mixture Regression (HMR) model that employs hyperbox-based input space partitioning to enhance predictive accuracy while managing uncertainty inherent in bioprocess data. The HMR model is designed to dynamically generate hyperboxes for input samples in a single-pass process, thereby improving learning speed and reducing computational complexity. Our experimental study utilizes a dataset that contains 106 bioreactors. This study evaluates the model’s performance in predicting critical quality attributes in monoclonal antibody manufacturing over a 15-day cultivation period. The results demonstrate that the HMR model outperforms comparable approximators in accuracy and learning speed and maintains interpretability and robustness under uncertain conditions. These findings underscore the potential of HMR as a powerful tool for enhancing predictive analytics in bioprocessing applications.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"14 ","pages":"Article 100221"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperbox Mixture Regression for process performance prediction in antibody production\",\"authors\":\"Ali Nik-Khorasani ,&nbsp;Thanh Tung Khuat ,&nbsp;Bogdan Gabrys\",\"doi\":\"10.1016/j.dche.2025.100221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the challenges of predicting bioprocess performance, particularly in monoclonal antibody (mAb) production, where conventional statistical methods often fall short due to time-series data’s complexity and high dimensionality. We propose a novel Hyperbox Mixture Regression (HMR) model that employs hyperbox-based input space partitioning to enhance predictive accuracy while managing uncertainty inherent in bioprocess data. The HMR model is designed to dynamically generate hyperboxes for input samples in a single-pass process, thereby improving learning speed and reducing computational complexity. Our experimental study utilizes a dataset that contains 106 bioreactors. This study evaluates the model’s performance in predicting critical quality attributes in monoclonal antibody manufacturing over a 15-day cultivation period. The results demonstrate that the HMR model outperforms comparable approximators in accuracy and learning speed and maintains interpretability and robustness under uncertain conditions. These findings underscore the potential of HMR as a powerful tool for enhancing predictive analytics in bioprocessing applications.</div></div>\",\"PeriodicalId\":72815,\"journal\":{\"name\":\"Digital Chemical Engineering\",\"volume\":\"14 \",\"pages\":\"Article 100221\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772508125000055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508125000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文解决了预测生物过程性能的挑战,特别是在单克隆抗体(mAb)生产中,由于时间序列数据的复杂性和高维性,传统的统计方法往往不足。我们提出了一种新的Hyperbox混合回归(HMR)模型,该模型采用基于Hyperbox的输入空间划分来提高预测精度,同时管理生物过程数据中固有的不确定性。HMR模型设计为在单遍过程中动态生成输入样本的超盒,从而提高了学习速度并降低了计算复杂度。我们的实验研究使用了包含106个生物反应器的数据集。本研究评估了该模型在预测单克隆抗体生产中15天培养期关键质量属性方面的性能。结果表明,HMR模型在精度和学习速度上优于同类逼近器,并在不确定条件下保持可解释性和鲁棒性。这些发现强调了HMR作为生物加工应用中增强预测分析的强大工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperbox Mixture Regression for process performance prediction in antibody production
This paper addresses the challenges of predicting bioprocess performance, particularly in monoclonal antibody (mAb) production, where conventional statistical methods often fall short due to time-series data’s complexity and high dimensionality. We propose a novel Hyperbox Mixture Regression (HMR) model that employs hyperbox-based input space partitioning to enhance predictive accuracy while managing uncertainty inherent in bioprocess data. The HMR model is designed to dynamically generate hyperboxes for input samples in a single-pass process, thereby improving learning speed and reducing computational complexity. Our experimental study utilizes a dataset that contains 106 bioreactors. This study evaluates the model’s performance in predicting critical quality attributes in monoclonal antibody manufacturing over a 15-day cultivation period. The results demonstrate that the HMR model outperforms comparable approximators in accuracy and learning speed and maintains interpretability and robustness under uncertain conditions. These findings underscore the potential of HMR as a powerful tool for enhancing predictive analytics in bioprocessing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信