定制表面静电电位的铜锌氰酰胺固溶体催化剂促进亚硝酸盐电还原中n中间体的不对称吸附

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiacheng Jayden Wang, Huong T. D. Bui, Xunlu Wang, Zhuoran Lv, Huashuai Hu, Shuyi Kong, Zhiqiang Wang, Lijia Liu, Wei Chen, Hui Bi, Minghui Yang, Tore Brinck, Jiacheng Wang, Fuqiang Huang
{"title":"定制表面静电电位的铜锌氰酰胺固溶体催化剂促进亚硝酸盐电还原中n中间体的不对称吸附","authors":"Jiacheng Jayden Wang, Huong T. D. Bui, Xunlu Wang, Zhuoran Lv, Huashuai Hu, Shuyi Kong, Zhiqiang Wang, Lijia Liu, Wei Chen, Hui Bi, Minghui Yang, Tore Brinck, Jiacheng Wang, Fuqiang Huang","doi":"10.1021/jacs.5c00837","DOIUrl":null,"url":null,"abstract":"The electrocatalytic nitrite reduction (NO<sub>2</sub>RR) converts nitrogen-containing pollutants to high-value ammonia (NH<sub>3</sub>) under ambient conditions. However, its multiple intermediates and multielectron coupled proton transfer process lead to low activity and NH<sub>3</sub> selectivity for the existing electrocatalysts. Herein, we synthesize a solid-solution copper–zinc cyanamide (Cu<sub>0.8</sub>Zn<sub>0.2</sub>NCN) with localized structure distortion and tailored surface electrostatic potential, allowing for the asymmetric binding of NO<sub>2</sub><sup>–</sup>. It exhibits outstanding NO<sub>2</sub>RR performance with a Faradaic efficiency of ∼100% and an NH<sub>3</sub> yield of 22 mg h<sup>–1</sup> cm<sup>–2</sup>, among the best for such a process. Theoretical calculations and in situ spectroscopic measurements demonstrate that Cu–Zn sites coordinated with linear polarized [NCN]<sup>2–</sup> could transform symmetric [Cu–O–N–O–Cu] in CuNCN-NO<sub>2</sub><sup>–</sup> to a [Cu–N–O–Zn] asymmetric configuration in Cu<sub>0.8</sub>Zn<sub>0.2</sub>NCN-NO<sub>2</sub><sup>–</sup>, thus enhancing adsorption and bond cleavage. A paired electro-refinery with the Cu<sub>0.8</sub>Zn<sub>0.2</sub>NCN cathode reaches 2000 mA cm<sup>–2</sup> at 2.36 V and remains fully operational at industrial-level 400 mA cm<sup>–2</sup> for &gt;140 h with a NH<sub>3</sub> production rate of ∼30 mg<sub>NH3</sub> h<sup>–1</sup> cm<sup>–2</sup>. Our work opens a new avenue of tailoring surface electrostatic potentials using a solid-solution strategy for advanced electrocatalysis.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"177 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Copper–Zinc Cyanamide Solid-Solution Catalyst with Tailored Surface Electrostatic Potentials Promotes Asymmetric N-Intermediate Adsorption in Nitrite Electroreduction\",\"authors\":\"Jiacheng Jayden Wang, Huong T. D. Bui, Xunlu Wang, Zhuoran Lv, Huashuai Hu, Shuyi Kong, Zhiqiang Wang, Lijia Liu, Wei Chen, Hui Bi, Minghui Yang, Tore Brinck, Jiacheng Wang, Fuqiang Huang\",\"doi\":\"10.1021/jacs.5c00837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrocatalytic nitrite reduction (NO<sub>2</sub>RR) converts nitrogen-containing pollutants to high-value ammonia (NH<sub>3</sub>) under ambient conditions. However, its multiple intermediates and multielectron coupled proton transfer process lead to low activity and NH<sub>3</sub> selectivity for the existing electrocatalysts. Herein, we synthesize a solid-solution copper–zinc cyanamide (Cu<sub>0.8</sub>Zn<sub>0.2</sub>NCN) with localized structure distortion and tailored surface electrostatic potential, allowing for the asymmetric binding of NO<sub>2</sub><sup>–</sup>. It exhibits outstanding NO<sub>2</sub>RR performance with a Faradaic efficiency of ∼100% and an NH<sub>3</sub> yield of 22 mg h<sup>–1</sup> cm<sup>–2</sup>, among the best for such a process. Theoretical calculations and in situ spectroscopic measurements demonstrate that Cu–Zn sites coordinated with linear polarized [NCN]<sup>2–</sup> could transform symmetric [Cu–O–N–O–Cu] in CuNCN-NO<sub>2</sub><sup>–</sup> to a [Cu–N–O–Zn] asymmetric configuration in Cu<sub>0.8</sub>Zn<sub>0.2</sub>NCN-NO<sub>2</sub><sup>–</sup>, thus enhancing adsorption and bond cleavage. A paired electro-refinery with the Cu<sub>0.8</sub>Zn<sub>0.2</sub>NCN cathode reaches 2000 mA cm<sup>–2</sup> at 2.36 V and remains fully operational at industrial-level 400 mA cm<sup>–2</sup> for &gt;140 h with a NH<sub>3</sub> production rate of ∼30 mg<sub>NH3</sub> h<sup>–1</sup> cm<sup>–2</sup>. Our work opens a new avenue of tailoring surface electrostatic potentials using a solid-solution strategy for advanced electrocatalysis.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"177 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c00837\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c00837","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电催化亚硝酸盐还原(NO2RR)将含氮污染物在环境条件下转化为高值氨(NH3)。但由于其多中间体和多电子耦合质子转移过程导致现有电催化剂的活性和NH3选择性较低。在此,我们合成了一种固溶体铜锌氰酰胺(Cu0.8Zn0.2NCN),具有局部结构畸变和定制的表面静电势,允许NO2 -的不对称结合。它具有出色的NO2RR性能,法拉第效率为~ 100%,NH3产率为22 mg h-1 cm-2,是同类工艺中最好的。理论计算和原位光谱测量表明,与线极化[NCN]2 -配位的Cu-Zn位点可以将CuNCN-NO2 -中的对称[Cu-O-N-O-Cu]转变为Cu0.8Zn0.2NCN-NO2 -中的不对称[Cu-N-O-Zn]构型,从而增强吸附和键解理作用。采用Cu0.8Zn0.2NCN阴极的配对电精炼厂在2.36 V电压下达到2000 mA cm-2,并在工业水平400 mA cm-2下完全运行140小时,NH3产率为~ 30 mgNH3 h - 1 cm-2。我们的工作开辟了一条利用固溶体策略剪裁表面静电电位的新途径,用于先进的电催化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Copper–Zinc Cyanamide Solid-Solution Catalyst with Tailored Surface Electrostatic Potentials Promotes Asymmetric N-Intermediate Adsorption in Nitrite Electroreduction

A Copper–Zinc Cyanamide Solid-Solution Catalyst with Tailored Surface Electrostatic Potentials Promotes Asymmetric N-Intermediate Adsorption in Nitrite Electroreduction
The electrocatalytic nitrite reduction (NO2RR) converts nitrogen-containing pollutants to high-value ammonia (NH3) under ambient conditions. However, its multiple intermediates and multielectron coupled proton transfer process lead to low activity and NH3 selectivity for the existing electrocatalysts. Herein, we synthesize a solid-solution copper–zinc cyanamide (Cu0.8Zn0.2NCN) with localized structure distortion and tailored surface electrostatic potential, allowing for the asymmetric binding of NO2. It exhibits outstanding NO2RR performance with a Faradaic efficiency of ∼100% and an NH3 yield of 22 mg h–1 cm–2, among the best for such a process. Theoretical calculations and in situ spectroscopic measurements demonstrate that Cu–Zn sites coordinated with linear polarized [NCN]2– could transform symmetric [Cu–O–N–O–Cu] in CuNCN-NO2 to a [Cu–N–O–Zn] asymmetric configuration in Cu0.8Zn0.2NCN-NO2, thus enhancing adsorption and bond cleavage. A paired electro-refinery with the Cu0.8Zn0.2NCN cathode reaches 2000 mA cm–2 at 2.36 V and remains fully operational at industrial-level 400 mA cm–2 for >140 h with a NH3 production rate of ∼30 mgNH3 h–1 cm–2. Our work opens a new avenue of tailoring surface electrostatic potentials using a solid-solution strategy for advanced electrocatalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信