利用部分重叠引物为基础的基因组行走PCR鉴定未知侧翼DNA的方案。

IF 1 Q3 BIOLOGY
Mengya Jia, Dongqin Ding, Xiaohua Liu, Haixing Li
{"title":"利用部分重叠引物为基础的基因组行走PCR鉴定未知侧翼DNA的方案。","authors":"Mengya Jia, Dongqin Ding, Xiaohua Liu, Haixing Li","doi":"10.21769/BioProtoc.5172","DOIUrl":null,"url":null,"abstract":"<p><p>Genome walking is a popular molecular technique for accessing unknown flanking DNAs, which has been widely used in biology-related fields. Herein, a simple but accurate genome-walking protocol named partially overlapping primer (POP)-based PCR (POP-PCR) is described. This protocol exploits a POP set of three POPs to mediate genome walking. The three POPs have a 10 nt 3' overlap and 15 nt heterologous 5' regions. Therefore, a POP can partially anneal to the previous POP site only at a relatively low temperature (approximately 50 °C). In primary POP-PCR, the low-temperature (25 °C) cycle allows the primary POP to partially anneal to site(s) of an unknown flank and many sites of the genome, synthesizing many single-stranded DNAs. In the subsequent high-temperature (65 °C) cycle, the target single-stranded DNA is converted into double-stranded DNA by the sequence-specific primer, attributed to the presence of this primer complement, while non-target single-stranded DNA cannot become double-stranded because it lacks a binding site for both primers. As a result, only the target DNA is amplified in the remaining 65 °C cycles. In secondary or tertiary POP-PCR, the 50 °C cycle directs the POP to the previous POP site and synthesizes many single-stranded DNAs. However, as in the primary PCR, only the target DNA can be amplified in the subsequent 65 °C cycles. This POP-PCR protocol has many potential applications, such as screening microbes, identifying transgenic sites, or mining new genetic resources. Key features • This POP-PCR protocol, built upon the technique developed by Li et al. [1], is universal to genome walking of any species. • The established protocol relies on the 10 nt 3' overlap among a set of three POPs. • The first two rounds of POP-PCRs can generally give a positive walking outcome.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":"15 3","pages":"e5172"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825308/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protocol to Identify Unknown Flanking DNA Using Partially Overlapping Primer-based PCR for Genome Walking.\",\"authors\":\"Mengya Jia, Dongqin Ding, Xiaohua Liu, Haixing Li\",\"doi\":\"10.21769/BioProtoc.5172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome walking is a popular molecular technique for accessing unknown flanking DNAs, which has been widely used in biology-related fields. Herein, a simple but accurate genome-walking protocol named partially overlapping primer (POP)-based PCR (POP-PCR) is described. This protocol exploits a POP set of three POPs to mediate genome walking. The three POPs have a 10 nt 3' overlap and 15 nt heterologous 5' regions. Therefore, a POP can partially anneal to the previous POP site only at a relatively low temperature (approximately 50 °C). In primary POP-PCR, the low-temperature (25 °C) cycle allows the primary POP to partially anneal to site(s) of an unknown flank and many sites of the genome, synthesizing many single-stranded DNAs. In the subsequent high-temperature (65 °C) cycle, the target single-stranded DNA is converted into double-stranded DNA by the sequence-specific primer, attributed to the presence of this primer complement, while non-target single-stranded DNA cannot become double-stranded because it lacks a binding site for both primers. As a result, only the target DNA is amplified in the remaining 65 °C cycles. In secondary or tertiary POP-PCR, the 50 °C cycle directs the POP to the previous POP site and synthesizes many single-stranded DNAs. However, as in the primary PCR, only the target DNA can be amplified in the subsequent 65 °C cycles. This POP-PCR protocol has many potential applications, such as screening microbes, identifying transgenic sites, or mining new genetic resources. Key features • This POP-PCR protocol, built upon the technique developed by Li et al. [1], is universal to genome walking of any species. • The established protocol relies on the 10 nt 3' overlap among a set of three POPs. • The first two rounds of POP-PCRs can generally give a positive walking outcome.</p>\",\"PeriodicalId\":93907,\"journal\":{\"name\":\"Bio-protocol\",\"volume\":\"15 3\",\"pages\":\"e5172\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825308/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-protocol\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21769/BioProtoc.5172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基因组行走是一种流行的获取未知侧翼dna的分子技术,已广泛应用于生物学相关领域。本文描述了一种简单而准确的基因组行走方案,称为部分重叠引物(POP)-based PCR (POP-PCR)。该方案利用一组由三个POP组成的POP来介导基因组行走。这三种持久性有机污染物具有10nt 3‘重叠和15nt异源5’区。因此,只有在相对较低的温度(约50℃)下,POP才能部分退火到先前的POP位置。在初级POP- pcr中,低温(25°C)循环允许初级POP部分退火到未知侧翼的位点和基因组的许多位点,合成许多单链dna。在随后的高温(65°C)循环中,由于该引物补体的存在,目标单链DNA被序列特异性引物转化为双链DNA,而非目标单链DNA由于缺乏两种引物的结合位点而无法转化为双链DNA。因此,在剩余的65°C循环中,只有目标DNA被扩增。在二级或三级POP- pcr中,50°C循环将POP引导到前一个POP位点并合成许多单链dna。然而,与初级PCR一样,在随后的65°C循环中只能扩增目标DNA。这种POP-PCR方案具有许多潜在的应用,如筛选微生物,鉴定转基因位点,或挖掘新的遗传资源。•该POP-PCR协议建立在Li等人开发的技术基础上,适用于任何物种的基因组行走。•已建立的协议依赖于一组三种持久性有机污染物之间的10nt 3'重叠。•前两轮pop - pcr通常可以给出积极的行走结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protocol to Identify Unknown Flanking DNA Using Partially Overlapping Primer-based PCR for Genome Walking.

Genome walking is a popular molecular technique for accessing unknown flanking DNAs, which has been widely used in biology-related fields. Herein, a simple but accurate genome-walking protocol named partially overlapping primer (POP)-based PCR (POP-PCR) is described. This protocol exploits a POP set of three POPs to mediate genome walking. The three POPs have a 10 nt 3' overlap and 15 nt heterologous 5' regions. Therefore, a POP can partially anneal to the previous POP site only at a relatively low temperature (approximately 50 °C). In primary POP-PCR, the low-temperature (25 °C) cycle allows the primary POP to partially anneal to site(s) of an unknown flank and many sites of the genome, synthesizing many single-stranded DNAs. In the subsequent high-temperature (65 °C) cycle, the target single-stranded DNA is converted into double-stranded DNA by the sequence-specific primer, attributed to the presence of this primer complement, while non-target single-stranded DNA cannot become double-stranded because it lacks a binding site for both primers. As a result, only the target DNA is amplified in the remaining 65 °C cycles. In secondary or tertiary POP-PCR, the 50 °C cycle directs the POP to the previous POP site and synthesizes many single-stranded DNAs. However, as in the primary PCR, only the target DNA can be amplified in the subsequent 65 °C cycles. This POP-PCR protocol has many potential applications, such as screening microbes, identifying transgenic sites, or mining new genetic resources. Key features • This POP-PCR protocol, built upon the technique developed by Li et al. [1], is universal to genome walking of any species. • The established protocol relies on the 10 nt 3' overlap among a set of three POPs. • The first two rounds of POP-PCRs can generally give a positive walking outcome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信