使用可穿戴传感器的无监督衰弱状态评估:在社区居住老年人中的可行性研究。

0 REHABILITATION
Advances in rehabilitation science and practice Pub Date : 2025-02-15 eCollection Date: 2025-01-01 DOI:10.1177/27536351241311845
Oonagh Mary Giggins, Grainne Vavasour, Julie Doyle
{"title":"使用可穿戴传感器的无监督衰弱状态评估:在社区居住老年人中的可行性研究。","authors":"Oonagh Mary Giggins, Grainne Vavasour, Julie Doyle","doi":"10.1177/27536351241311845","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study examined whether community-dwelling older adults can independently capture wearable sensor data that can be used to classify frailty status.</p><p><strong>Methods: </strong>Fifty-one older adults (age 77.5 ± 8.4 years, height 163.6 77.5 ± 8.4, weight 72.0 ± 13.5 kg, female 76%) took part in this investigation. Participants independently captured physical activity and physical function data at home using a smartwatch and a research-grade inertial sensor system for 48-hours. Machine learning classifiers were used to determine whether the data obtained can discriminate between frailty levels.</p><p><strong>Results: </strong>Models incorporating variables from both the smartwatch and inertial sensor system were successful in the prediction of frailty status.</p><p><strong>Discussion: </strong>This study has demonstrated the ability of older adults to collect data which can be used to indicate their frailty risk. This may enable earlier intervention and lessen the impact of frailty on the individual and society as a whole.</p>","PeriodicalId":72107,"journal":{"name":"Advances in rehabilitation science and practice","volume":"14 ","pages":"27536351241311845"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829299/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Assessment of Frailty Status Using Wearable Sensors: A Feasibility Study among Community-Dwelling Older Adults.\",\"authors\":\"Oonagh Mary Giggins, Grainne Vavasour, Julie Doyle\",\"doi\":\"10.1177/27536351241311845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study examined whether community-dwelling older adults can independently capture wearable sensor data that can be used to classify frailty status.</p><p><strong>Methods: </strong>Fifty-one older adults (age 77.5 ± 8.4 years, height 163.6 77.5 ± 8.4, weight 72.0 ± 13.5 kg, female 76%) took part in this investigation. Participants independently captured physical activity and physical function data at home using a smartwatch and a research-grade inertial sensor system for 48-hours. Machine learning classifiers were used to determine whether the data obtained can discriminate between frailty levels.</p><p><strong>Results: </strong>Models incorporating variables from both the smartwatch and inertial sensor system were successful in the prediction of frailty status.</p><p><strong>Discussion: </strong>This study has demonstrated the ability of older adults to collect data which can be used to indicate their frailty risk. This may enable earlier intervention and lessen the impact of frailty on the individual and society as a whole.</p>\",\"PeriodicalId\":72107,\"journal\":{\"name\":\"Advances in rehabilitation science and practice\",\"volume\":\"14 \",\"pages\":\"27536351241311845\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829299/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in rehabilitation science and practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/27536351241311845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"0\",\"JCRName\":\"REHABILITATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in rehabilitation science and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/27536351241311845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"0","JCRName":"REHABILITATION","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究考察了居住在社区的老年人是否可以独立捕获可穿戴传感器数据,这些数据可用于对虚弱状态进行分类。方法:51例老年人(年龄77.5±8.4岁,身高163.6 77.5±8.4,体重72.0±13.5 kg,女性76%)参加调查。参与者在家中使用智能手表和研究级惯性传感器系统独立捕获48小时的身体活动和身体功能数据。使用机器学习分类器来确定获得的数据是否可以区分脆弱程度。结果:结合智能手表和惯性传感器系统变量的模型在预测虚弱状态方面是成功的。讨论:这项研究证明了老年人收集数据的能力,这些数据可以用来表明他们的衰弱风险。这可能使早期干预成为可能,并减轻虚弱对个人和整个社会的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unsupervised Assessment of Frailty Status Using Wearable Sensors: A Feasibility Study among Community-Dwelling Older Adults.

Unsupervised Assessment of Frailty Status Using Wearable Sensors: A Feasibility Study among Community-Dwelling Older Adults.

Unsupervised Assessment of Frailty Status Using Wearable Sensors: A Feasibility Study among Community-Dwelling Older Adults.

Unsupervised Assessment of Frailty Status Using Wearable Sensors: A Feasibility Study among Community-Dwelling Older Adults.

Objectives: This study examined whether community-dwelling older adults can independently capture wearable sensor data that can be used to classify frailty status.

Methods: Fifty-one older adults (age 77.5 ± 8.4 years, height 163.6 77.5 ± 8.4, weight 72.0 ± 13.5 kg, female 76%) took part in this investigation. Participants independently captured physical activity and physical function data at home using a smartwatch and a research-grade inertial sensor system for 48-hours. Machine learning classifiers were used to determine whether the data obtained can discriminate between frailty levels.

Results: Models incorporating variables from both the smartwatch and inertial sensor system were successful in the prediction of frailty status.

Discussion: This study has demonstrated the ability of older adults to collect data which can be used to indicate their frailty risk. This may enable earlier intervention and lessen the impact of frailty on the individual and society as a whole.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信