闷烧泥炭排放的颗粒:尺寸分解成分和排放因子。

IF 3.5 Q3 ENVIRONMENTAL SCIENCES
Amy L. Wilson, Wuquan Cui, Yuqi Hu, Marta Chiapasco, Guillermo Rein, Alexandra E. Porter, Geoff Fowler and Marc E. J. Stettler
{"title":"闷烧泥炭排放的颗粒:尺寸分解成分和排放因子。","authors":"Amy L. Wilson, Wuquan Cui, Yuqi Hu, Marta Chiapasco, Guillermo Rein, Alexandra E. Porter, Geoff Fowler and Marc E. J. Stettler","doi":"10.1039/D4EA00124A","DOIUrl":null,"url":null,"abstract":"<p >Peat fires emit large quantities of particles and gases, which cause extensive haze events. Epidemiological studies have correlated wildfire smoke inhalation with increased morbidity and mortality. Despite this, uncertainties surrounding particle properties and their impact on human health and the climate remain. To expand on the limited understanding this laboratory study investigated the physicochemical characteristics of particles emitted from smouldering Irish peat. Properties investigated included number and mass emission factors (EFs), size distribution, morphology, and chemical composition. Fine particles with a diameter less than 2.5 μm (PM<small><sub>2.5</sub></small>), accounted for 91 ± 2% of the total particle mass and the associated mass EF was 12.52 ± 1.40 g kg<small><sup>−1</sup></small>. Transmission electron microscopy imaging revealed irregular shaped metal particles, spherical sulfate particles, and carbonaceous particles with clusters of internal particles. Extracted particle-bound metals accounted for 3.1 ± 0.5% of the total particle mass, with 86% of the quantified metals residing in the fraction with a diameter less than 1 μm. Redox active and carcinogenic metals were detected in the particles, which have been correlated with adverse health effects if inhaled. This study improves the understanding of size-resolved particle characteristics relevant to near-source human exposure and will provide a basis for comparison to other controlled and natural peatland fires.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 3","pages":" 348-366"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827554/pdf/","citationCount":"0","resultStr":"{\"title\":\"Particles emitted from smouldering peat: size-resolved composition and emission factors†\",\"authors\":\"Amy L. Wilson, Wuquan Cui, Yuqi Hu, Marta Chiapasco, Guillermo Rein, Alexandra E. Porter, Geoff Fowler and Marc E. J. Stettler\",\"doi\":\"10.1039/D4EA00124A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Peat fires emit large quantities of particles and gases, which cause extensive haze events. Epidemiological studies have correlated wildfire smoke inhalation with increased morbidity and mortality. Despite this, uncertainties surrounding particle properties and their impact on human health and the climate remain. To expand on the limited understanding this laboratory study investigated the physicochemical characteristics of particles emitted from smouldering Irish peat. Properties investigated included number and mass emission factors (EFs), size distribution, morphology, and chemical composition. Fine particles with a diameter less than 2.5 μm (PM<small><sub>2.5</sub></small>), accounted for 91 ± 2% of the total particle mass and the associated mass EF was 12.52 ± 1.40 g kg<small><sup>−1</sup></small>. Transmission electron microscopy imaging revealed irregular shaped metal particles, spherical sulfate particles, and carbonaceous particles with clusters of internal particles. Extracted particle-bound metals accounted for 3.1 ± 0.5% of the total particle mass, with 86% of the quantified metals residing in the fraction with a diameter less than 1 μm. Redox active and carcinogenic metals were detected in the particles, which have been correlated with adverse health effects if inhaled. This study improves the understanding of size-resolved particle characteristics relevant to near-source human exposure and will provide a basis for comparison to other controlled and natural peatland fires.</p>\",\"PeriodicalId\":72942,\"journal\":{\"name\":\"Environmental science: atmospheres\",\"volume\":\" 3\",\"pages\":\" 348-366\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827554/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science: atmospheres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d4ea00124a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d4ea00124a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

泥炭火灾释放出大量的颗粒和气体,造成大面积的雾霾事件。流行病学研究已将野火烟雾吸入与发病率和死亡率增加联系起来。尽管如此,围绕颗粒特性及其对人类健康和气候的影响的不确定性仍然存在。为了扩大有限的理解,本实验室研究调查了从闷烧爱尔兰泥炭排放的颗粒的物理化学特性。研究的性质包括数量和质量发射因子(EFs)、尺寸分布、形貌和化学成分。直径小于2.5 μm的细颗粒物(PM2.5)占总颗粒物质量的91±2%,相关质量EF为12.52±1.40 g kg-1。透射电子显微镜成像显示不规则形状的金属颗粒,球形硫酸盐颗粒和内部颗粒簇的碳质颗粒。提取的颗粒结合金属占总颗粒质量的3.1±0.5%,其中86%的定量金属存在于直径小于1 μm的分数中。在颗粒中检测到氧化还原活性和致癌金属,这些金属如果吸入会对健康产生不利影响。这项研究提高了对与近源人类暴露有关的大小分辨颗粒特征的理解,并将为与其他控制和自然泥炭地火灾进行比较提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Particles emitted from smouldering peat: size-resolved composition and emission factors†

Particles emitted from smouldering peat: size-resolved composition and emission factors†

Peat fires emit large quantities of particles and gases, which cause extensive haze events. Epidemiological studies have correlated wildfire smoke inhalation with increased morbidity and mortality. Despite this, uncertainties surrounding particle properties and their impact on human health and the climate remain. To expand on the limited understanding this laboratory study investigated the physicochemical characteristics of particles emitted from smouldering Irish peat. Properties investigated included number and mass emission factors (EFs), size distribution, morphology, and chemical composition. Fine particles with a diameter less than 2.5 μm (PM2.5), accounted for 91 ± 2% of the total particle mass and the associated mass EF was 12.52 ± 1.40 g kg−1. Transmission electron microscopy imaging revealed irregular shaped metal particles, spherical sulfate particles, and carbonaceous particles with clusters of internal particles. Extracted particle-bound metals accounted for 3.1 ± 0.5% of the total particle mass, with 86% of the quantified metals residing in the fraction with a diameter less than 1 μm. Redox active and carcinogenic metals were detected in the particles, which have been correlated with adverse health effects if inhaled. This study improves the understanding of size-resolved particle characteristics relevant to near-source human exposure and will provide a basis for comparison to other controlled and natural peatland fires.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信